• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymology of microbial dimethylsulfoniopropionate catabolism

Brummett, Adam Eugene 01 May 2017 (has links)
The biosynthesis of DMSP by phytoplankton and algae has wide ranging impact on marine organisms. Release of DMSP and uptake by marine bacteria leads to the eventual catabolism of this osmolyte. Enzymatic breakdown of DMSP leads to acrylate and volatile DMS production, which is fluxed into the atmosphere. When DMS enters the atmosphere it undergoes oxidation, acting as nucleation sites for water. The nucleation of water, and the subsequent cloud formation increases the albedo and reflects solar radiation. Global climate has therefore been hypothesized to be dependent upon DMSP breakdown to DMS. The enzymatic production of acrylate is also of interest for industrial applications. Only six enzymes are known to act as a DMSP-lyase, causing the production of DMS. These enzymes are still being discovered, and until recently there was very limited analysis of the biochemical requirements for catalysis. The work presented here investigates these requirements and the structural properties that permit the elimination reaction yielding DMS.
2

Substrate specificity and mutational studies of KDO8PS

Allison, Timothy Murray January 2012 (has links)
The enzyme 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyses the stereospecific aldol-like condensation between phosphoenolpyruvate (PEP) and the five-carbon sugar D-arabinose 5-phosphate (A5P). This is the first biosynthetic step in the formation of 3-deoxy-D-manno-octulosonate (KDO), an essential lipopolysaccharide component of all Gram-negative bacteria. KDO8PS is evolutionarily related to the shikimate pathway enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS), which catalyses a similar condensation reaction between PEP and the four-carbon sugar D-erythrose 4-phosphate (E4P), in the first step of the shikimate pathway to aromatic compounds in plants and microorganisms. As well as being a one-carbon shorter substrate, E4P has the opposite C2-OH configuration to A5P. While there are both metal-dependent and metal-independent forms of KDO8PS, in contrast, all DAH7PS are metal-dependent enzymes. Little is understood about the key sequence features that distinguish KDO8PS and DAH7PS. These features, particularly those that contribute to A5P or E4P binding, are thought to be responsible for the differences in substrate specificity between the two enzymes. This thesis describes the functional and structural studies of KDO8PS mutants to examine the roles of these residues, using the metal-dependent KDO8PS from Acidithiobacillus ferrooxidans and the metal-independent KDO8PS from Neisseria meningitidis. In Chapter 2 an extensive KDO8PS and DAH7PS sequence analysis is presented. The results, which identify sequence conservation in both enzymes, are discussed in the context of the (β/α)8 TIM-barrel structure. Some of the differences in conservation between the two enzymes were highlighted as being obvious in having a role or contributing to the different substrate selection preferences of the two enzymes, such as an extended β7α7 loop in KDO8PS, and motif differences on the β2α2 and β4α4 loops. A similar analysis was also used to compare metal-dependent and metal-independent KDO8PSs, and it was found the two forms differ in the conservation of only three residues. Chapter 3 describes the characterisation of A. ferrooxidans KDO8PS (AfeKDO8PS) and investigates aspects of metal dependency in KDO8PS. The enzyme was found to be metal dependent, and like all other KDO8PS enzymes, to possess a tetrameric quaternary structure, and display tight substrate specificity. The β8α8 loop was found to have a critical role in binding and positioning the substrates, and AfeKDO8PS could not be engineered to be a metal-independent enzyme. The role of the KDO8PS-conserved KANRS motif, present on the β2α2 loop and one of the main contributors to the A5P binding site, is probed in Chapter 4. Individual residues of the motif were mutated to investigate function, and the motif was converted to the equivalent motif found in DAH7PS (KPRS). It was found that the Lys plays a critical role in enzymatic catalysis, and is likely intimately involved in the enzyme mechanism. The Asn residue of the motif in KDO8PS was found to be an important contributor to KDO8PS stereospecificity. The work described in Chapter 5 investigates the role of the β7α7 loop in KDO8PS. This long active-site loop, which exists in a shorter version in DAH7PS, was found not to be essential for catalysis in KDO8PS, but was necessary for efficient catalysis. The two conserved residues on the loop provide interactions to A5P, but the presence of the extended loop as a whole was found to be most important for catalytic efficiency. In Chapter 6 a conserved residue on the re face of PEP is investigated. In KDO8PS the residue is conserved as Asp, and in DAH7PS the same residue is conserved as a Glu. Mutational analysis found that in KDO8PS the Asp residue appears to be important for enzyme activity but unimportant for PEP binding. Mutating this Asp in KDO8PS to Glu was accommodated by KDO8PS, but it was found its introduction could potentially be optimised by coupling the change with mutation to other conserved differences. In KDO8PS, one of the interfaces between adjacent subunits in the tetrameric structure is partially composed of a conserved sequence motif, PAFLxR. In Chapter 7, the roles of the residues in this motif are explored. The Arg of the motif was found to be important for A5P binding. The equivalent (and also conserved) motif in DAH7PS is GARNxQ, and mutation of residues in the KDO8PS motif to the equivalent residues in DAH7PS was tolerated by KDO8PS, but negatively impacted upon the enzyme kinetic parameters. The sequence features investigated in the other chapters were combined with those to the subunit interface to create a DAH7PS-like protein. This extensively engineered protein lost all KDO8PS activity, but nor did it gain DAH7PS activity. Lastly, in Chapter 8 the results from all chapters are reviewed and ideas are discussed for advancing the research presented in this thesis.
3

Investigation of the Influence of Transition Metal Ions on the Fe-S Cluster Biosynthesis Protein SufU

Jayawardhana, W. Geethamala Dhananjalee 07 December 2015 (has links)
No description available.
4

Identification of native co-factors of MshB and MCA from Mycobacterium species

Kocabas, Evren 21 September 2010 (has links)
Mycothiol (MSH), a low-molecular- weight thiol, is a primary reducing agent and essential for the survival of mycobacteria. The full pathway of MSH biosynthesis and detoxification includes various promising drug targets. Several metalloenzymes are involved in this pathway, such as a deacetylase (MshB) and mycothiol S-conjugate amidase (MCA). MshB catalyzes the deacetylation of GlcNAc-Ins to form GlcN-Ins and acetate. Mycothiol S-conjugate amidase (MCA) cleaves the amide bond of mycothiol S-conjugates of various drugs and toxins. The identification of the native co-factor is critical for the design of potent and effective inhibitors. Therefore, in this study, we identified the possible native co-factors of MshB and MCA from M. smegmatis and M. tuberculosis. To reach our aim, we used a pull-down method to rapidly purify halo-MshB and halo-MCA under anaerobic conditions. Our data indicates that the metal bound to MshB and MCA anaerobically purified from E. coli grown in minimal medium is mainly Fe(II), while proteins purified under aerobic conditions contain bound Zn (II) and Fe(II) that varies with the metal content of the medium. For a further clarification of the metal ion preferences of MshB and MCA, we determined the MshB and MCA affinity for Zn(II) to be in the picomolar range and Ms MshB affinity for Fe(II) in nanomolar range. These results indicate that MshB and MCA can be found bound with either iron or zinc and this is independent to their affinities for these metal ions. / Master of Science
5

Enzymatic Characterization of N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside Deacetylase (MshB)

Huang, Xinyi 06 June 2013 (has links)
Mycobacterium species, which contain the causative agent for human tuberculosis (TB), produce inositol derivatives including mycothiol (MSH).  MSH is a unique and dominant cytosolic thiol that protects mycobacterial pathogens against the damaging effects of reactive oxygen species and is involved in antibiotic detoxification.  Therefore, MSH is considered a potential drug target.  The deacetylase MshB catalyzes the committed step in MSH biosynthesis by converting N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside (GlcNAc-Ins) to 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside (GlcN-Ins).  In this dissertation, we present detailed functional analysis of MshB.  Our work has shown that MshB is activated by divalent metal ions that can switch between Zn2+ and Fe2+ depending on environmental conditions, including  metal ion availability and oxidative conditions.  MshB employs a general acid-base catalyst mechanism wherein the Asp15 functions as a general base to activate the metal-bound water nucleophile for attack of the carbonyl carbon on substrate.  Proton-transfer from a general acid catalyst facilitates breakdown of the tetrahedral intermediate and release of products.  A dynamic tyrosine was identified that regulates access to the active site and participates in catalysis by stabilizing the oxyanion intermediate.  Molecular docking simulations suggest that the GlcNAc moiety on GlcNAc-Ins is stabilized by hydrogen bonding interactions with active site residues, while a hydrophobic stacking interaction between the inositol ring and Met98 also appears to contribute to substrate affinity for MshB.  Additional binding interactions with side chains in a hydrophobic cavity adjacent to the active site were suggested when the docking experiments were carried out with large amidase substrates.  Together the results from this study provide groundwork for the rational design of specific inhibitors against MshB, which may circumvent current challenges with TB treatment. / Ph. D.
6

Structure-function relationships in metal dependent enzymes

Eleanor Wai Wai Leung Unknown Date (has links)
Metalloproteins account for at least half of all known proteins. Metal ions often facilitate chemical that are energetically and/or kinetically challenging. Metal ion-dependent proteins are responsible for a myriad of essential biological functions, including respiration, biosynthesis of essential amino acids, nitrogen fixation, oxygen transport, photosynthesis and metabolisms (e.g. glycolysis and citric acid cycle). Not surprisingly, a growing number of disorders (e.g. various cancers, phenylketonuria, Wilson’s disease) are associated with mutations in metalloenzymes. A general introduction of the importance of metals in biology is presented in chapter 1. This thesis is aimed at obtaining a greater understanding of the structure and function of three metalloenzymes, ketol acid reductoisomerase (KARI), purple acid phosphatase (PAP) and metallo β lactamase (MβL). Chapter 2 examines the structure and dynamics of plant KARI. KARI is an enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. KARI is a binuclear Mg2+ enzyme that catalyses the conversion of 2-acetolactate (AL) into (2R)-2,3-dihydroxy-3-isovalerate or 2-aceto-2-hydroxybutyrate into (2R, 3R)-2,3-dihydroxy-3-methylvalerate in the presence of NADPH. To date, the only reported structures for a plant KARI are those of the spinach enzyme-Mn2+-(phospho) ADP ribose-(2R,3R)-2,3-dihydroxy-3-methylvalerate complex and the spinach KARI-Mg2+-NADPH-N-hydroxy-N-isopropyloxamate complex, where N-hydroxy-N-isopropyloxamate (IpOHA) is a predicted transition-state analog. These studies demonstrate that the enzyme is consisted of two domains, N- domain and C- domain, with the active site at the interface of these domains. In this chapter, the structures of the rice KARI-Mg2+ and rice KARI-Mg2+-NADPH complexes were determined to 1.55 and 2.8 Å resolutions, respectively. Comparisons of all the available plant KARI structures have revealed several major differences. Firstly, the N-domain is rotated up to 15o relative to the C-domain, expanding the active site by up to 4 Å. Secondly, an α-helix in the C-domain that includes residues V510-T519 and forms part of the active site moves by ~ 3.9 Å upon binding of NADPH. Thirdly, the 15 C-terminal amino acid residues in the rice KARI-Mg2+ complex are disordered. In the rice KARI-Mg2+-NADPH complex and spinach KARI structures, many of the 15 residues bind to NADPH and the N-domain and cover the active site. Fourthly, the location of the metal ions within the active site can vary by up to 2.7 Å. The new structures have thus, led to the proposal of an induced-fit mechanism. In this proposed induced-fit mechanism, (i) substrate enters the active site, (ii) active site is closed during catalysis, and (iii) the opening of active site facilitates product release. PAP is also a binuclear metalloenzyme and is capable of utilizing a heterovalent active site to hydrolyse a broad range of phosphomonoester substrates. Chapter 3 examines the catalytic mechanism of PAP based on several new crystal structures. The red kidney bean PAP structure in complex in sulphate was determined to 2.4 Å. This sulphate-bound structure provides insight into the pre-catalytic phase of its reaction cycle. This stucture demonstrates the significance of an extensive hydrogen-bonding network in the second coordination in initial substrate binding and orientation prior to hydrolysis. Most importantly, the two metal ions, Fe3+ and Zn2+, are five-coordinate in this structure, with only one nucleophilic μ-hydroxide present in the metal-bridging position. In combination with kinetic, crystallographic and spectroscopic data, all PAP structures form the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general. To date, no reliable method for producing recombinant PAP at levels suitable for structural biology have been reported. Natural sources are the only way so far to obtaining PAP in a large quantity. Attempts to produce active and recombinant PAP from Mycobacterium marinum using bacterial are found in chapter 4. In brief, in combination with Nus fusion tag, Rosetta (DE3) strain and lower temperature (e.g. 25oC), expression of soluble and mycobacterial PAP becomes possible. However, this soluble protein is non-functional and thus, switching into other expression system (e.g.algal sytem) is the only approach to obtain soluble and functional protein. In algal expression system, human PAP was attempted. Preliminary results indicate that some PAP activity was observed when expressed in algal system. Chapter 5 focuses on the investigation of metallo β lactamase (MβL) from Klebsiella pneumoniae (Kp-MβL). This enzyme requires one or two Zn2+ ions for catalysis. Kinetic properties of Kp-MβL for the hydrolysis of various β-lactam substrates (e.g. benzyl-penicillin, cefoxitin, imipenem and meropenem) were investigated and the role of the metal ions in catalysis was also examined. Kinetic data demonstrate that Klebsiella pneumoniae MβL can degrade a broad spectrum of β-lactam antibiotics, with a high preference for cephems and carbapenems. Kinetic data from pH dependence studies has revealed that catalysis of benzyl-penicillin and meropenem is preferred at acidic pH. The kcat vs pH profile demonstrates that catalysis is enhanced by protonation, thus it is likely that the relevant group is responsible for the donation of a proton to the product or leaving group. In this case, a doubly Lewis activated, bridging hydroxide molecule has been speculated. A single protonation event (pKa ~7) is also observed in kcat/Km vs pH profile. Since benzyl-penicillin does not have an acidic moiety in this pH range, this event is likely to be associated with the free enzyme. His 79 and 139 have been speculated to enhance substrate binding. In contrast, catalysis of both cefoxitin and imipenem is favoured at alkaline pH, leading to the proposal that a terminally bound water is likely to form a nucleophile. A bell-shaped pH profile for kcat/Km is observed for cefoxitin and imipenem substrates. pKa of ~ 9-9.5 is likely to be associated with Lys161, which enhances substrate binding. In Chapter 6, a novel MβL from Serratia proteamaculans (Spr-MβL) is investigated. This chapter includes expression, purification and preliminary characterization of this MβL using steady-state kinetics. Expression of this enzyme in Rosetta (DE3) plysS E. coli strain yields only a small amount of soluble enzyme (1 mg/ 6 L culture). To improve the amount of soluble protein, Spr-MβL was subjected to several rounds of in vitro evolution. About two-fold gain in solubility was achieved by this method along with a five-fold increase in β-lactamase activity. Further rounds of directed evolution are now planned. The kinetic behaviour for Spr-MβL-catalysed the hydrolysis of three β-lactam substrates, penicillin, cefoxitin and imipenem were also studied. Kinetic data suggest that a water molecule bridging the two Zn2+ ions is the likely nucleophile in the reaction with penicillin while the reaction-initiating nucleophile is likely to be a terminally bound hydroxide in the reaction with cephalothin and imipenem (Chapter 6). In summary, this project has led to a better understanding of the structures of KARI and PAP prior to catalysis. This project has also aided in the understanding of catalytic mechanism of MβLs and the role the metal ions play. The knowledge gained will facilitate the development of new chemotherapeutics and herbicides.

Page generated in 0.093 seconds