• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 15
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 19
  • 16
  • 15
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation on Starting Transient Characteristics and Start-Up Scenario of Metal Halide Lamps

Chen, Jia-Hong 04 July 2006 (has links)
This study investigates the starting characteristics of metal halide lamps. A laboratory electronic ballast was built to drive metal halide lamps with a programmable low-frequency square-wave current. The lamp current at each stage of the starting transient can be independently adjusted. Experiments were conducted on 150-W metal halide lamps. By examining the waveforms of transient voltage, current and power, the starting period can be classified into four stages, breakdown, glow discharging, glow-to-arc transition, and thermal equilibrium. In addition, the stable operation is defined by observing the variations of the lamp arc, lighting spectrum and luminous output. Based on the investigation results, four starting scenarios are presented and examined to learn the different acceleration schemes. Experimental evidence shows that the starting time of a metal halide lamp can be effectively shortened by increasing the lamp current during the start-up transition. More importantly, a specifically-regulated operating power enables the lamp to further enhance the luminance producing, and hence to greatly reduce the starting transient period.
12

An Electronic Ballast with Automatic Identification of Rated Power for Metal Halide Lamps

Tsai, Wen-Tien 31 July 2008 (has links)
The research searches for an identification strategy which is able to recognize three small-wattage metal halide lamps rated at powers of 20-W, 35-W and 70-W from three world-wide prominent brands of GE, OSRAM and PHILIPS. A two-stage constant-power starting scenario is adopted to successfully start all three kinds of lamps without causing a tremendous power during the identification process. At the first stage, the tested lamps are started by a constant power of 25 W. The 20-W lamps can be distinguished from the others by their relatively high lamp voltages at the 30th seconds after being ignited. Then, the other lamps are driven up to 35 W to manifest the voltage difference of between the 35-W and 70-W lamps, and thus can be recognized at the 40th seconds. After being made out, the lamps are operated at their rated powers. Eventually, a verification checking with protection is introduced to prevent the tested lamps from over power operation. Experiments have been done on numerous new and aged lamps. The experimental results evidence that the electronic ballast with the proposed identification strategy can recognize three lamps¡¦ rated powers correctly during the starting transition, and drive the lamp to its rated power before entering the steady-state.
13

Photoemission studies of alkali halides in the photon energy region 10 to 23 eV

Smith, Jerel Arlen January 1974 (has links)
Photocopy of typescript. / Bibliography: leaves 131-134. / viii, 134 leaves ill
14

Radiation damage and defects in solids

Hughes, A. E. January 1966 (has links)
No description available.
15

Study of the optical absorption and dichroism of color centers in gamma-irradiated LiF:Mg

Jen, Luke Chen-Yuan January 2011 (has links)
Digitized by Kansas Correctional Industries
16

Mechanical properties of alkali-halide crystals (NaCl, KBr, KCl)

January 1947 (has links)
by J.K. Galt. / "September 17, 1947." / Bibliography: p. 24. / Army Signal Corps Contract No. W-39-039 sc-32037
17

Investigation on Ignition Characteristics of Metal Halide Lamp

Huang, Chun-kai 31 August 2011 (has links)
Conventionally, metal halide lamps were struck by voltages higher than those required for breaking down the electrodes to ensure successful ignition. These high ignition voltages may hurt the electrodes to some extent, leading to a shorter lamp lifecycle. In practice, the breakdown voltage can be affected by the dark current which occurs when a voltage is applied on lamp before the electrodes have been broken down. A lamp model to account for the dark current is derived from the test results. Three ignition schemes with single-pulse, multiple pulses and step voltage are used for describing the effect of the dark current on the breakdown voltage. Experimental results exhibit that the breakdown voltage can be lowered by applying a higher dark current or allotting more times of dark current to the lamp. The investigation provides useful information for the design of the ignition circuit.
18

Investigation on Sustaining Arc Current for Metal Halide Lamps with Single-Pulse Ignition

Cheng, Jung-Cheng 06 August 2012 (has links)
This research attempts to ignite metal halide lamps once with a single-pulse to avoid the problems of uncomfortable light strobes and irregularly high voltage and current stresses on circuit components caused by multiple strikes in conventional electronic ballasts. Metal halide lamps with single-pulse ignition, however, have difficulty in sustaining the lamp arc when operated with a low-frequency square-wave current. Experimental results indicate that the lamp exhibits an extremely small equivalent resistance as the electrode gap has being broken down. In this stage, the ballast has to keep the lamp current not declining to zero in the first half cycle. On the other hand, the lamp acts like open-circuited during commutation when driven by an alternating current. A sufficient energy from the ballast is needed to continue the arc in the next half-cycle. The transition waveform of the lamp arc current after being broken down is analyzed and the required energy for sustaining the lamp arc is calculated accordingly. Based on the investigation results, a starting scenario with appropriately designed circuit parameters for single-pulse ignition can be figured out. The starting scenario has been experimentally implemented on a 70 W metal halide lamp to demonstrate that the metal halide lamp can be successfully started up with single-pulse ignition.
19

Electronic Ballast with Auto Frequency Searching for Metal Halide Lamps

Yang, Ching-Yuan 09 June 2005 (has links)
A single-stage high-power-factor electronic ballast with auto frequency searching capability provides a compact and efficient solution for ballasting metal halide lamps. The circuit configuration is originated from the integration of a buck-boost converter and a half-bridge resonant inverter. The buck-boost converter is designed to operate in discontinuous current mode (DCM) to improve the input power factor and at the same time to regulate the output lamp power. The resonant inverter operating at a high frequency is adopted to obtain a high efficiency on the power conversion circuit. The control strategy of auto frequency searching is realized by a microprocessor along with the acoustic resonance detection circuit. To avoid the acoustic resonance, an auto-frequency-searching method is used to search ¡§quite windows¡¨ on operating metal halide lamps with the high-frequency electronic ballast. Provided the acoustic resonance should happen to the lamp on operation, the electronic ballast will automatically change the operating frequency until a stable frequency is located. When the operating frequency has been changed, the duty-ratio of the buck-boost converter is adjusted to regulate the lamp power at the rated value. Experimental tests are carried out on a laboratory with 70-W metal halide lamps to verify the effectiveness of the auto-frequency- searching control.
20

Investigation on Acoustic Resonance Phenomena of Metal Halide Lamps

Feng, Yao-wen 14 June 2005 (has links)
The acoustic resonance phenomena of metal halide lamps are investigated. A measuring system is set up to examine the effects of the acoustic resonance to the shape of the lamp arc, the lighting energy spectrum, the color temperature, the light output as well as electrical characteristics. Two ballast circuits are built to drive the lamps with the sine-wave current and the square-wave current, respectively. One ballast employs the series resonant inverter to output the sinusoidal lamp current. The other makes use of the full-bridge inverter to drive the lamps with the square-wave current. They are operated over a high-frequency range from 20kHz to 30kHz. For both ballast circuits, the operating frequency and the magnitude of the lamp current can be controlled independently. ¡@¡@The experiments are conducted on the 70-W metal halide lamps. The experimental results show that the spectral energy and the color temperature change more significantly as the acoustic resonance becomes more serious. These effects become less significant when the lamps are driven by the square-wave current. The degree of the acoustic resonance can be identified by detecting the variation of the lamp voltage or the output light. The investigated results of the thesis can provide useful information when a standard of the acoustic resonance is considered.

Page generated in 0.0663 seconds