• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 23
  • 19
  • 14
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The electronic spectrum of the FeH radical

Carter, Robert Thomas January 1993 (has links)
No description available.
2

Electrochemical energy conversion using metal hydrides hydrogen storage materials

Jonas, Ncumisa Prudence January 2010 (has links)
Magister Scientiae - MSc / Metal hydrides hydrogen storage materials have the ability to reversibly absorb and release large amounts of hydrogen at low temperature and pressure. In this study, metal hydride materials employed as negative electrodes in Ni-MH batteries are investigated. Attention is on AB5 alloys due to their intermediate thermodynamic properties. However, AB5 alloys a have tendency of forming oxide film on their surface which inhibits hydrogendissociation and penetration into interstitial sites leading to reduced capacity. To redeem this, the materials were micro-encapsulated by electroless deposition with immersion in Pd and Pt baths. PGMs were found to increase activation, electrochemical activity and H2 sorption kinetics of the MH alloys. Between the two catalysts the one which displayed better performance was chosen. The materials were characterized by X-ray difractommetry, and the alloys presented hexagonal CaCu 5–type structure of symmetry P6/mmm. No extra phases were found, all the modified electrodes displayed the same behavior as the parent material. No shift or change in peaks which corresponded to Pd or Pt were observed. Scanning Electron Microscopy showed surface morphology of the materials modified with Pd and Pt particles, the effect of using different reducing agents (i.e ., N2H4 and NaH2PO2), and alloys functionalized with γ-aminosopropyltrietheosilane solution prior to Pd deposition. From all the surface modified alloys, Pt and Pd particles were observed on the surface of the AB5 alloys. Surface modification without pre-functionalization had non-uniform coatings, but the pre- functionalized exhibited more uniform coatings. Energy dispersive X-ray Spectroscopy and Atomic Absorption Spectroscopy determined loading of the Pt and Pd on the surface of all the alloys, and the results were as follows: EDS ( Pt 13.41and Pd 31.08wt%), AAS (Pt 0.11 and Pd 0.78wt%). Checking effect of using different reducing agents N2H4 and NaH2PO2 for electroless Pd plating the results were as follows: EDS (AB5_N2H4_Pd- 7.57 and AB 5_NaH2PO2_Pd- 31.08wt%), AAS (AB5_N2H4_Pd- 11.27 and AB5_NaH2PO2_Pd- 0.78wt%). For the AB5 alloyspre-unctionalized with γ-APTES, the results were: EDS (10.24wt%) and AAS (0.34wt%). Electrochemical characterization was carried out by charge/discharge cycling controlled via potential to test the AB5 alloy. Overpotential for unmodified, Pt and Pd modified electrodes were-1.1V, -1.24V, and -1.60V, respectively. Both modified electrodes showed discharge overpotentials at lower values implying higher specific power for the battery in comparison with the unmodified electrodes. However, Pd electrode exhibited higher specific power than Pt. To check the effect of the reducing agent the results were as follows: AB5_ N2H4_Pd (0.4V) and AB5_NaH2PO2_Pd (-0.2V), sodium hypophosphite based alloy showing lower overpotential values, implying it had higher specific power than hydrazine based bath. Alloy pre-functionalized with γ-APTES, the overpotential was (0.28V), which was higher than -0.2V of the alloy without pre-functionalization, which means pre-functionalization with γ-APTES did not improve the performance of the alloy electrode. Polarization resistance of the electrodes was investigated with Electrochemical Impedance Spectroscopy. The unmodified alloy showed high resistance of 21.6884 while, both Pt and Pd modified electrodes exhibited decrease 14.7397 and 12.1061 respectively, showing increase in charge transfer for the modified electrodes. Investigating the effect of the reducing agent, the alloys exhibited the following results: (N2H497.8619 and NaH2PO212.1061 ) based bath. Alloy pre-functionalized with γ-APTES displayed the resistance of 9.3128. Cyclic Voltammetry was also used to study the electrochemical activity of the alloy electrodes. The voltammograms obtained displayed the anodic current peak at -0.64V to -0.65V for the Pt and Pd modified electrodes, respectively. Furthermore, the electrode which was not coated with Pt or Pd the current peak occurred at -0.59V. The Pd and Pt coated alloy electrodes represented lower discharge overpotentials, which are important to improve the battery performance. Similar results were also observed with alloy electrodes Pd modified using N2H4(-0.64V) and NaH2PO2(-0.65V). For the electrode modified with and without γ-APTES the over potentials were thesame (-0.65V). PGM deposition has shown to significantly improve activation and hydrogen sorption performance and increased the electro-catalytic activity of these alloy electrodes. Modified electrodes gave better performance than the unmodified electrodes. As a result, Pd was chosen as the better catalyst for the modification of AB5 alloy. Based on the results, it was concluded that Pd electroless plated using NaH2PO2 reducing agent had better performance than electroless plating using N2H4 as the reducing agent. Alloy electrode pre-functionalized with γ-APTES gave inconsistent results, and this phenomenon needs to be further investigated. In conclusion, the alloy modified with Pd employing NaH 2PO2 usased electroless plating bath exhibited consistent results, and was found to be suitable candidate for use in Ni-MH batteries / South Africa
3

Electrochemical energy conversion using metal hydrides hydrogen storage materials

Jonas, Ncumisa Prudence January 2010 (has links)
<p>Metal hydrides hydrogen storage materials have the ability to reversibly absorb and release large amounts of hydrogen at low temperature and pressure. In this study, metal hydride materialsemployed as negative electrodes in Ni-MH batteries are investigated. Attention is on AB5 alloys due to their intermediate thermodynamic properties. However, AB5 alloys a have&nbsp / tendency of forming oxide film on their surface which inhibits hydrogen dissociation and penetration into interstitial sites leading to reduced capacity. To redeem this, the materials were micro-encapsulated by electroless deposition with immersion in Pd and Pt baths. PGMs were found to increase activation, electrochemical activity and H2 sorption kinetics of the MH alloys. Between the two catalysts the one which displayed better performance was chosen. The materials were characterized by X-ray difractommetry, and the alloys presented hexagonal CaCu5 &ndash / type&nbsp / structure of symmetry P6/mmm. No extra phases were found, all the modified electrodes displayed the same behavior as the parent material. No shift or change in peaks which corresponded to Pd or Pt were observed. Scanning Electron Microscopy showed surface morphology of the materials modified with Pd and Pt particles, the effect of using different reducing agents (i.e., N2H4 and NaH2PO2), and alloys functionalized with &gamma / -aminosopropyltrietheosilane solution prior to Pd deposition. From all the surface modified alloys, Pt and Pd particles were observed on the&nbsp / surface of the AB5 alloys. Surface modification without pre-functionalization had non-uniform coatings, but the prefunctionalized exhibited more uniform coatings. Energy dispersive X-ray Spectroscopy and Atomic Absorption Spectroscopy determined loading of the Pt and Pd on the surface of all the alloys, and the results were as follows: EDS ( Pt 13.41 and Pd 31.08wt%), AAS (Pt 0.11 and Pd 0.78wt%). Checking effect of using different reducing agents N2H4 and NaH2PO2 for electroless Pd plating the results were as follows: EDS (AB5_N2H4_Pd- 7.57 and AB5_NaH2PO2_Pd- 31.08wt%), AAS (AB5_N2H4_Pd- 11.27 and AB5_NaH2PO2_Pd- 0.78wt%). For the AB5 alloys pre-functionalized with &gamma / -APTES, the results were: EDS (10.24wt%) and AAS (0.34wt%). Electrochemical characterization was carried out by charge/discharge cycling controlled via potential to test the AB5 alloy. Overpotential for unmodified, Pt and Pd modified&nbsp / electrodes were -1.1V, -1.24V, and -1.60V, respectively. Both modified electrodes showed discharge overpotentials at lower values implying higher specific power for the battery in comparison with the unmodified electrodes. However, Pd electrode exhibited higher specific power than Pt. To check the effect of the reducing agent the results were as follows: AB5_ N2H4_Pd (0.4V) and AB5_NaH2PO2_Pd (-0.2V), sodium hypophosphite based alloy showing lower overpotential values, implying it had higher specific power than hydrazine based bath. Alloy prefunctionalized with &gamma / -APTES, the overpotential was (0.28V), which was higher than -0.2V of the alloy without pre-functionalization, which means pre-functionalization with &gamma / -APTES did not improve the performance of the alloy electrode. Polarization resistance of the electrodes was investigated with Electrochemical Impedance Spectroscopy. The unmodified alloy showed high resistance of&nbsp / 21.6884 while, both Pt and Pd modified electrodes exhibited decrease 14.7397 and 12.1061 respectively, showing increase in charge transfer for the modified electrodes. Investigating the effect of the reducing agent, the alloys exhibited the following results: (N2H4 97.8619 and NaH2PO2 12.1061) based bath. Alloy pre-functionalized with &gamma / -APTES displayed the&nbsp / resistance of 9.3128. Cyclic Voltammetry was also used to study the electrochemical activity of the alloy electrodes. The voltammograms obtained displayed the anodic current peak at -0.64V&nbsp / o -0.65V for the Pt and Pd modified electrodes, respectively. Furthermore, the electrode which was not coated with Pt or Pd the current peak occurred at -0.59V. The Pd and Pt coated&nbsp / alloy electrodes represented lower discharge overpotentials, which are important to improve the battery performance. Similar results were also observed with alloy electrodes Pd modified&nbsp / using N2H4 (-0.64V) and NaH2PO2 (-0.65V). For the electrode modified with and without &gamma / -APTES the over potentials were the same (-0.65V). PGM deposition has shown to significantly&nbsp / improve activation and hydrogen sorption performance and increased the electro-catalytic activity of these alloy electrodes. Modified electrodes gave better performance than the unmodified&nbsp / electrodes. As a result, Pd was chosen as the better catalyst for the modification of AB5 alloy. Based on the results, it was concluded that Pd electroless plated using NaH2PO2 reducing agent&nbsp / had better performance than electroless plating using N2H4 as the reducing agent. Alloy electrode pre-functionalized with &gamma / -APTES gave inconsistent results, and this phenomenon needs to&nbsp / be further investigated. In conclusion, the alloy modified with Pd employing NaH2PO2 based electroless plating bath exhibited consistent results, and was found to be suitable candidate for&nbsp / use in Ni-MH batteries.</p>
4

Electrochemical energy conversion using metal hydrides hydrogen storage materials

Jonas, Ncumisa Prudence January 2010 (has links)
<p>Metal hydrides hydrogen storage materials have the ability to reversibly absorb and release large amounts of hydrogen at low temperature and pressure. In this study, metal hydride materialsemployed as negative electrodes in Ni-MH batteries are investigated. Attention is on AB5 alloys due to their intermediate thermodynamic properties. However, AB5 alloys a have&nbsp / tendency of forming oxide film on their surface which inhibits hydrogen dissociation and penetration into interstitial sites leading to reduced capacity. To redeem this, the materials were micro-encapsulated by electroless deposition with immersion in Pd and Pt baths. PGMs were found to increase activation, electrochemical activity and H2 sorption kinetics of the MH alloys. Between the two catalysts the one which displayed better performance was chosen. The materials were characterized by X-ray difractommetry, and the alloys presented hexagonal CaCu5 &ndash / type&nbsp / structure of symmetry P6/mmm. No extra phases were found, all the modified electrodes displayed the same behavior as the parent material. No shift or change in peaks which corresponded to Pd or Pt were observed. Scanning Electron Microscopy showed surface morphology of the materials modified with Pd and Pt particles, the effect of using different reducing agents (i.e., N2H4 and NaH2PO2), and alloys functionalized with &gamma / -aminosopropyltrietheosilane solution prior to Pd deposition. From all the surface modified alloys, Pt and Pd particles were observed on the&nbsp / surface of the AB5 alloys. Surface modification without pre-functionalization had non-uniform coatings, but the prefunctionalized exhibited more uniform coatings. Energy dispersive X-ray Spectroscopy and Atomic Absorption Spectroscopy determined loading of the Pt and Pd on the surface of all the alloys, and the results were as follows: EDS ( Pt 13.41 and Pd 31.08wt%), AAS (Pt 0.11 and Pd 0.78wt%). Checking effect of using different reducing agents N2H4 and NaH2PO2 for electroless Pd plating the results were as follows: EDS (AB5_N2H4_Pd- 7.57 and AB5_NaH2PO2_Pd- 31.08wt%), AAS (AB5_N2H4_Pd- 11.27 and AB5_NaH2PO2_Pd- 0.78wt%). For the AB5 alloys pre-functionalized with &gamma / -APTES, the results were: EDS (10.24wt%) and AAS (0.34wt%). Electrochemical characterization was carried out by charge/discharge cycling controlled via potential to test the AB5 alloy. Overpotential for unmodified, Pt and Pd modified&nbsp / electrodes were -1.1V, -1.24V, and -1.60V, respectively. Both modified electrodes showed discharge overpotentials at lower values implying higher specific power for the battery in comparison with the unmodified electrodes. However, Pd electrode exhibited higher specific power than Pt. To check the effect of the reducing agent the results were as follows: AB5_ N2H4_Pd (0.4V) and AB5_NaH2PO2_Pd (-0.2V), sodium hypophosphite based alloy showing lower overpotential values, implying it had higher specific power than hydrazine based bath. Alloy prefunctionalized with &gamma / -APTES, the overpotential was (0.28V), which was higher than -0.2V of the alloy without pre-functionalization, which means pre-functionalization with &gamma / -APTES did not improve the performance of the alloy electrode. Polarization resistance of the electrodes was investigated with Electrochemical Impedance Spectroscopy. The unmodified alloy showed high resistance of&nbsp / 21.6884 while, both Pt and Pd modified electrodes exhibited decrease 14.7397 and 12.1061 respectively, showing increase in charge transfer for the modified electrodes. Investigating the effect of the reducing agent, the alloys exhibited the following results: (N2H4 97.8619 and NaH2PO2 12.1061) based bath. Alloy pre-functionalized with &gamma / -APTES displayed the&nbsp / resistance of 9.3128. Cyclic Voltammetry was also used to study the electrochemical activity of the alloy electrodes. The voltammograms obtained displayed the anodic current peak at -0.64V&nbsp / o -0.65V for the Pt and Pd modified electrodes, respectively. Furthermore, the electrode which was not coated with Pt or Pd the current peak occurred at -0.59V. The Pd and Pt coated&nbsp / alloy electrodes represented lower discharge overpotentials, which are important to improve the battery performance. Similar results were also observed with alloy electrodes Pd modified&nbsp / using N2H4 (-0.64V) and NaH2PO2 (-0.65V). For the electrode modified with and without &gamma / -APTES the over potentials were the same (-0.65V). PGM deposition has shown to significantly&nbsp / improve activation and hydrogen sorption performance and increased the electro-catalytic activity of these alloy electrodes. Modified electrodes gave better performance than the unmodified&nbsp / electrodes. As a result, Pd was chosen as the better catalyst for the modification of AB5 alloy. Based on the results, it was concluded that Pd electroless plated using NaH2PO2 reducing agent&nbsp / had better performance than electroless plating using N2H4 as the reducing agent. Alloy electrode pre-functionalized with &gamma / -APTES gave inconsistent results, and this phenomenon needs to&nbsp / be further investigated. In conclusion, the alloy modified with Pd employing NaH2PO2 based electroless plating bath exhibited consistent results, and was found to be suitable candidate for&nbsp / use in Ni-MH batteries.</p>
5

Formation and analytical application of inorganic and organometallic hydrides

Harriott, M. January 1984 (has links)
No description available.
6

Elucidation of the aqueous equilibrium system of IrH₂(PMe₃)₃Cl and periodic trends of the iridium (III) dihydrido tris(trimethylphosphino) series, IrH₂(PMe₃)₃X /

Matthews, Kelly E., January 1994 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 125-130). Also available via the Internet.
7

A search for bridging-dinitrogen heterobimetallic complexes containing iron and molybdenum or tungsten

Helleren, Caroline Anne January 1998 (has links)
No description available.
8

Catalyst Design for the Ionic Hydrogenation of C=N Bonds

Hu, Yue January 2015 (has links)
New chiral half-sandwich Ru hydride enantiomers with asymmetric disubstitution on the Cp ligand have been successfully synthesized and resolved. An enantiopure thiolate ligand was installed on the Ru center to form a pair of diastereomers, which were separated by crystallization via vapor diffusion of pentane into their saturated Et2O solution. Racemization occurred at elevated temperatures, but a room temperature conversion pathway was developed to remove the chiral thiolate ligand and generate the enantiopure hydride complex. Two new Rh(III) hydride complexes and their Ir analogues have been synthesized and characterized. The hydride complexes readily transfer H– to the N-carbophenoxypyridinium cation at room temperature, giving mixtures of 1,2- and 1,4-dihydropyridine products. In CD3CN, all four hydrides give nearly the same product ratio, demonstrating that the hydride transfer mechanism is outer sphere. In weak or non-coordinating solvents, the resulting 16-electron cations catalyze the isomerization of 1,2- to 1,4-dihydropyridine at rates that depend upon the cation and the solvent. The fastest isomerization was observed with the Rh(III) cation [Cp*Rh(2-(2-pyridyl)phenyl)]+, Acetonitrile can trap the 16-electron cations resulting from hydride transfer, dramatically slowing the isomerization process. The thermodynamics and kinetics of hydride, hydrogen atom and proton transfer reactions of the Rh(III) hydride, Cp*Rh(2-(2-pyridyl)phenyl)H, were studied both thermodynamically and kinetically. This hydride is both a good hydride and hydrogen atom donor, but a poor proton donor. This previously unobserved combination of properties is due to the high energy of the hydride’s conjugate base, [Cp*Rh(2-(2-pyridyl)phenyl)]−. Its exceptional hydride donor ability makes Cp*Rh(2-(2-pyridyl)phenyl)H a very efficient catalyst for the ionic hydrogenation of iminium cations.
9

Investigation in transition metal dihydrogen and dihydride chemistry /

Law, James Kirk, January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 144-149).
10

Synthesis and characterization of novel anionic transition metal borohydrides

Eliseo, Jennifer R January 2007 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2007. / Includes bibliographical references (leaves 87-92). / viii, 92 leaves, bound ill. 29 cm

Page generated in 0.0845 seconds