• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 23
  • 19
  • 14
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

High-resolution infrared emission spectroscopy of diatomic and triatomic metal hydrides

Shayesteh, Alireza January 2006 (has links)
Several hydrides of Group 2 and 12 elements were generated in the gas phase using an emission source that combines an electrical discharge with a high temperature furnace, and their high-resolution infrared emission spectra were recorded with a Fourier transform spectrometer. Two classes of molecules were studied: <em>a)</em> diatomic metal hydrides BeH, MgH, CaH, SrH, ZnH and CdH; <em>b)</em> linear triatomic metal hydrides BeH<sub>2</sub>, MgH<sub>2</sub>, ZnH<sub>2</sub> and HgH<sub>2</sub>. <br /><br /> Infrared emission spectra of BeH, MgH, CaH, SrH, ZnH and CdH free radicals contained several vibration-rotation bands in their <sup>2</sup>SIGMA<sup>+</sup> ground electronic state. The new data were combined with all the previous ground state data from diode laser infrared spectra and pure rotation spectra available in the literature. Spectroscopic constants, i. e. , vibrational band origins, rotational, centrifugal distortion, and spin-rotation interaction constants, were determined for each observed vibrational level by least-squares fitting of all the data. In addition, the data from all isotopologues were fitted simultaneously using the empirical Dunham-type energy level expression for <sup>2</sup>SIGMA<sup>+</sup> states, and correction parameters due to the breakdown of the Born-Oppenheimer approximation were determined. The equilibrium internuclear distances (<em>r</em><sub>e</sub>) of <sup>9</sup>BeH, <sup>24</sup>MgH, <sup>40</sup>CaH, <sup>88</sup>SrH, <sup>64</sup>ZnH and <sup>114</sup>CdH were determined to be 1. 342424(2), 1. 729721(1), 2. 002360(1), 2. 146057(1), 1. 593478(2) and 1. 760098(3) angstroms, respectively, and the corresponding <em>r</em><sup>e</sup> distances for <sup>9</sup>BeD, <sup>24</sup>MgD, <sup>40</sup>CaD, <sup>88</sup>SrD, <sup>64</sup>ZnD and <sup>114</sup>CdD are 1. 341731(2), 1. 729157(1), 2. 001462(1), 2. 145073(1), 1. 593001(2) and 1. 759695(2) angstroms, respectively. <br /><br /> Gaseous BeH<sup>2</sup>, MgH<sup>2</sup>, ZnH<sup>2</sup> and HgH<sup>2</sup> molecules were discovered and unambiguously identified by their high-resolution infrared emission spectra. The &nu;<sub>3</sub> antisymmetric stretching fundamental band and several hot bands in the &nu;<sub>3</sub> region were rotationally analyzed, and spectroscopic constants were obtained for almost all naturally-occurring isotopologues. The rotational constants of the 000 ground states were used to determine the <em>r</em><sub>0</sub> internuclear distances. For BeH<sub>2</sub>, ZnH<sub>2</sub>, ZnD<sub>2</sub>, HgH<sub>2</sub> and HgD<sub>2</sub> molecules, the rotational constants of the 000, 100, 01<sup>1</sup>0 and 001 levels were used to determine the equilibrium rotational constants (<em>B</em><sub>e</sub>) and the associated equilibrium internuclear distances <em>r</em><sub>e</sub>. The <em>r</em><sub>e</sub> distances of ZnH<sub>2</sub> and ZnD<sub>2</sub> differed by about 0. 01%, and those of HgH<sub>2</sub> and HgD<sub>2</sub> differed by about 0. 005%. These discrepancies were larger than the statistical uncertainties by one order of magnitude, and were attributed to the breakdown of the Born-Oppenheimer approximation.
32

Phases et nouveaux composés à base de magnésium pour le stockage de l'hydrogène / Laves phases and new compounds based on magnesium for hydrogen storage application

Petrache, Cristina Luliana 24 October 2008 (has links)
Ce mémoire de thèse concerne l’étude des composés ternaires Terre rare–magnésium–nickel utilisable pour le stockage de l’hydrogène. Ces composés ont été obtenus par fusion ou par mécanosynthèse. Les intermétalliques YNi4-xAlxMg, dérivant des phases de Laves de structure cubique ont été étudiés. Ils réagissent de manière réversible avec l’hydrogène à P et T ambiantes. Le comportement structural lors d’une hydruration a été étudié par DRX in situ. Le composé conserve sa symétrie cubique mais avec diminution de la cristallinité. Cette étude est complétée par l’étude de composés : (i) riche en terre rare (e.g. Gd4NiMg) qui absorbe l’hydrogène à température ambiante de manière irréversible. La structure de l’intermétallique et de l’hydrure sont déterminées. La décomposition de l’hydrure à température supérieure à 90°C est expliquée. (ii) riche en magnésium. Nous avons pu identifié un nouveau composé de formulation proche de Mg77Gd9Ni14.5 de structure CFC. / This work deals with the study of ternary compounds Rare Earth – magnesium - nickel used ofr hydrogen storage. All the compounds are prepared by fusion and by mechanical alloying method.. The compounds YNi4-xAlxMg, derived from the cubic Laves phases have been studied in the first part. It reacts reversibly towards hydrogen at atmospheric pressure and room temperature. The structural behaviour during the hydrogen sorption has been studied by in situ XRD. The compound remains cubic with a decrease of the crystallinity. This study is completed by the study of compounds : (i) rich in rare earth (e.g. Gd4NiMg) that absorb hydrogen at room temperature but irreversibly. Structures of both the intermetallic and the hydride have been determined. The decomposition of the hydride at temperature higher than 90°C is also explained. (ii) rich in magnesium. A new compounds with a formulation closed to Mg77Gd9Ni14.5 has been identified and it crystallized with a cubic faces centred structure.
33

Síntese por reação do TiFe nanoestruturado para o armazenamento de hidrogênio, a partir da moagem de alta energia de misturas de pós de TiH2 e Fe / Reaction synthesis of nanostructured TiFe for hydrogen storage from high-energy ball milling of TiH2 and Fe powders mixtures

Falcão, Railson Bolsoni 02 May 2016 (has links)
Neste trabalho investigou-se a obtenção do composto TiFe a partir da moagem de alta energia de misturas de pós de TiH2 e Fe, seguida de aquecimento sob vácuo para a reação de síntese. No lugar do Ti, o TiH2 foi escolhido como precursor em razão de sua fragilidade, benéfica para a diminuição da aderência dos pós ao ferramental de moagem. Foram preparados dois lotes de misturas obedecendo-se a relação Ti:Fe de 50:50 e 56:44. Ambos foram processados em um moinho do tipo planetário por tempos que variaram de 5 até 40 horas, sob atmosfera de argônio de elevada pureza. Em todos os experimentos foram mantidos constantes a velocidade de rotação do prato do moinho, a quantidade de amostra, o diâmetro e o número de bolas. As amostras moídas foram caracterizadas por calorimetria exploratória diferencial (DSC), termogravimetria (TG), microscopia eletrônica de varredura (MEV), difração de raios X (DRX) e fluorescência de raios X por dispersão de energia (EDXRF). Apenas TiH2 e Fe foram observados nas amostras moídas, com um grau crescente de mistura em função do tempo de moagem. O composto TiFe nanoestruturado (12,5 a 21,4nm) foi obtido de forma majoritária em todas as amostras após a reação de síntese promovida pelo tratamento térmico a 600ºC (873K). As amostras reagidas foram caracterizadas por microscopia eletrônica de transmissão (MET) e DRX. Um equipamento do tipo Sievert, operando sob um fluxo constante (modo dinâmico), foi utilizado para levantar as curvas termodinâmicas de absorção e dessorção de hidrogênio. Todas as amostras absorveram hidrogênio à temperatura ambiente (~298K) sem a necessidade de ciclos térmicos de ativação. Os melhores resultados foram obtidos com as amostras moídas por 25 e 40 horas, de composição não estequiométrica 56:44. Tais amostras absorveram e dessorveram hidrogênio à temperatura ambiente, sob os platôs de aproximadamente 6,4 e 2,2bar (~0,6 e 0,2MPa), respectivamente. A capacidade máxima de armazenamento foi de 1,06% em massa de hidrogênio (H:M~0,546), sob pressão de até 11bar (1,1MPa), com reversão de até 1,085% em massa de hidrogênio (H:M~0,559), sob pressão de até 1bar (0,1MPa). Estas amostras também apresentaram maior cinética de absorção e dessorção de hidrogênio com fluxos de 1,23 (25h) e 2,86cm3/g.min. (40h). Tais resultados são atribuídos à variação composicional da fase TiFe e à maior quantidade de TiH2 livre. / In this work high-energy ball milling from TiH2 and Fe powder mixtures, followed by post-heating under vacuum, were performed for the reaction synthesis of TiFe compound. TiH2 was used instead of Ti due to its brittleness, preventing strong particles adhesion to the grinding balls and vial walls. Two mixtures batches were prepared following Ti:Fe ratios of 50:50 and 56:44. Both of them were dry-milled in a planetary mill for times ranging from 5 to 40 hours, under high purity argon atmosphere. The speed of main disk rotation, the amount of sample, number and diameter of the balls were kept constant in all experiments. As-milled samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray fluorescence (EDXRF). As-milled materials presented only Fe and TiH2 phases showing increased mixture degree with the milling time. After heat treatment at 600ºC (873K), nanostructured TiFe compound (12.5 to 21.4nm) was mostly formed in all samples. Reacted samples were characterized by transmission electron microscopy (TEM) and XRD. Hydrogen absorption and desorption thermodynamics curves were determined in a Sievert-type apparatus operating at constant flow (dynamic mode). All samples absorbed hydrogen at room temperature (~298K) requiring no thermal activation cycles. Best results were seen on samples milled at 25 and 40 hours, with non-stoichiometric composition 56:44. Those samples absorbed and desorbed hydrogen at plateaus of 6.4 and 2.2bar (~0.6 and 0.2MPa), respectively. Maximum hydrogen storage capacity was 1.06 wt% (H:M~0,546) at 11bar (1.1MPa), with reversion of 1.085 wt% (H:M~0,559) at 1bar (0.1MPa). Higher hydrogen absorption and desorption kinetics were observed in those samples, as well, with flows of 1.23 (25h) and 2.86cm3/g.min. (40h). Such results were assigned to the compositional variation of TiFe phase and to the largest amount of free TiH2.
34

Mechanical alloying Ti-Ni based metallic compounds as negative electrode materials for Ni-MH battery / Mécanosynthèse des alliages à base NiTi utilisés comme électrodes négatives pour des accumulateurs Nickel-Métal-Hydrure

Li, Xianda 09 February 2015 (has links)
Les accumulateurs Ni-MH (Nickel-Métal-Hydrure) sont un sujet prometteur et largement étudié dans les recherches d’une énergie propre et durable. Trouver le matériau idéal pour l'électrode négative à haute densité volumétrique et gravimétrique est la clé pour l’application de cette technologie. Les hydrures métalliques à base de Ti-Ni ont des propriétés équilibrées entre la capacité d’hydrogène et les performances électrochimiques.L’objectif de cette thèse est d’étudier les effets de substitutions/additions d’éléments et de la mécanosynthèse sur la structure et les propriétés d’hydrogène des alliages Ti-Ni. Dans cette étude, une série d’alliages à base de Ti-Ni avec des substitutions/additions de Mg ou de Zr ont été systématiquement étudiés.Les alliages (TiNi)1-xMgx, (TiH2)1.5Mg0.5Ni, and Ti2-xZrxNi ont été synthétisés par mécanosynthèse à partir de poudres élémentaires. Dans un premier temps, l’influence du temps de broyage et les effets de substitutions/additions sur les microstructures ont été caractérisés par des techniques telles que la DRX, le MEB et le MET. Dans un second temps, les propriétés d’hydrogénation des différents alliages ont été mesurées par des réactions solid-gaz et par cyclage électrochimique.La théorie de la fonctionnelle de la densité (DFT) en utilisant le programme CASTEP a permis de calculer les enthalpies de formation afin de comparer la stabilité thermodynamique des alliages obtenus. Dans ces travaux de recherche, nous avons identifié les priorités d’alliage des ternaires Ni-Ti-Mg et Ti-Ni-Zr dans des conditions de broyage. La transformation structurale du Ti en phase CFC, induite par l’introduction d’éléments étrangers, a été mise en évidence.Les courbes PCI (Pression-Composition-Isothermes) et les capacités de décharge en fonction du nombre de cycles indiquent les propriétés d’hydrogène des alliages obtenus, y compris TiNi, Ti2Ni (amorphe), Ti-Mg et Ti-Zr. / Ni-MH (Nickel-Metal-Hydride) batteries have been a promising and extensively studied topic among clean and sustainable energy researches. Finding the ideal material for the negative electrode with high volumetric and gravimetric densities is the key to apply this technology on broader applications. Metal hydrides based on Ti-Ni have balanced properties between hydrogen capacity and electrochemical performances in cycling.The objective of this thesis is to study the effects of element substitution/doping and mechanical alloying on the structural and hydrogen properties of Ti-Ni alloys. In this study, a series of Ti-Ni based systems with Mg or Zr doping/substitution have been systematically investigated.The metallic compounds (TiNi)1-xMgx, (TiH2)1.5Mg0.5Ni, and Ti2-xZrxNi were synthesized by mechanically alloying from elemental powders.The milling time and effects of Mg, Zr substitution/doping were studied firstly in respect of their microstructures, using characterization techniques including XRD, SEM, TEM (EDX support), followed by the hydrogen properties measurements of the samples by hydrogen solid-gas reaction and electrochemical cycling.A first principle calculation tool based on DFT (Density Functional Theory) was carried out to further investigate the enthalpy of formation in order to compare the thermodynamical stability of the obtained compounds. In the study, we have found the alloying priorities in the ternary alloys Ti-Ni-Mg and Ti-Ni-Zr under milling conditions.A structure transformation of Ti to FCC induced by foreign elements is reported and investigated. Enthalpy of formation per atom of the compounds were obtained by DFT calculations, which helped interpreting the experimental results. PCI (Pressure Composition Isotherms) curves and discharge capacities as the function of cycling numbers revealed the hydrogen properties of the obtained compounds, including TiNi, Ti2Ni (amorphous), Ti-Mg and Ti-Zr.
35

Synthesis, characterization and electrochemical hydrogen storage properties of mechanicalyl alloyed Ti-Mg-Ni : application as negative electrode for Ni-MH battery / Elaboration par mécanosynthèse et caractérisation des propriétés de stockage électrochimique d'hydrogène d'alliages Ti-Mg-Ni : application en vue de leur utilisation comme électrode négative d'accumulateur Ni-MH.

Zhang, Zhao 07 April 2017 (has links)
Le stockage de l'hydrogène est l'un des plus grands problèmes techniques qui restreignent l'application pratique de l'hydrogène. Les hydrures métalliques sont considérés comme la solution principale à ce problème puisqu'ils peuvent absorber et désorber de façon réversible une grande quantité d'hydrogène sous une température et une pression modérées. Par ailleurs, les hydrures métalliques utilisés comme électrodes négatives dans les accumulateurs Nickel-Métal Hydrure (Ni-MH) sont également les composants clés des performances de ces derniers.Dans cette thèse, les alliages métalliques TiMgNix, MgTi1-xNix et TiMg1-xNix ont été synthétisés par broyage mécanique à partir de poudres élémentaires. La microstructure et les transformations de phase des échantillons préparés ont été caractérisées par DRX, MEB et MET (avec microanalyse EDS).Les propriétés d'hydrogénation ont été mesurées par réaction d'hydrogène solide-gaz et par des essais électrochimiques. Un diagramme de composition-capacité 3D a été établi sur la base du diagramme de phase ternaire Ti-Mg-Ni. Un procédé de broyage en deux étapes a été mis en œuvre pour améliorer les performances électrochimiques des alliages Ti-Mg-Ni.De plus, les alliages TiNi1-xCux ont été synthétisés par broyage mécanique et ensuite recuits. L 'influence de la substitution du nickel par le cuivre sur la structure et les propriétés électrochimiques est étudiée en utilisant une double approche: expérimentale et par simulation.Les résultats obtenus par la théorie de la fonctionnelle de la densité (DFT) en utilisant le programme CASTEP montrent que l'enthalpie de formation et l'énergie d'adsorption de l¿hydrogène de la phase pseudo-binaire Ti(Ni, Cu) sont en bon accord avec les résultats expérimentaux. / The storage of hydrogen is one of the biggest technical problem that restrict the practical application of hydrogen. Metal hydrides are mainly regarded as the solution facing to this issue since it can reversibly absorb and desorb big amount of hydrogen under moderate temperature and pressure. Meanwhile, metal hydrides used as the negative electrodes of Ni-MH batteries are also the key components to the battery performance.In this thesis, the metallic composite TiMgNix, MgTi1-xNix and TiMg1-xNix were synthesized by mechanical alloying from elemental powder. The microstructure and phase transformation of prepared samples were characterized by XRD, SEM, TEM (EDS support). The hydrogenation properties were measured by hydrogen solid-gas reaction and electrochemical tests. Based on the Ti-Mg-Ni ternary phase diagram, a 3D composition-capacity diagram have been established. Two-step mill process was proposed for meliorating the electrochemical performance of Ti-Mg-Ni alloys.Additionally, TiNi1-xCux alloys had been synthesized by mechanical alloying and subsequent annealing and studied using experimental and computational approaches. The influence of Cu substitution for Ni on the phase structure and electrochemical properties are investigated. The first principle calculation was carried out to study the formation enthalpy and hydrogen adsorption energy of pseudo-binary Ti(Ni, Cu) phase. The computational results are in good agreement with experimental results.
36

High-resolution infrared emission spectroscopy of diatomic and triatomic metal hydrides

Shayesteh, Alireza January 2006 (has links)
Several hydrides of Group 2 and 12 elements were generated in the gas phase using an emission source that combines an electrical discharge with a high temperature furnace, and their high-resolution infrared emission spectra were recorded with a Fourier transform spectrometer. Two classes of molecules were studied: <em>a)</em> diatomic metal hydrides BeH, MgH, CaH, SrH, ZnH and CdH; <em>b)</em> linear triatomic metal hydrides BeH<sub>2</sub>, MgH<sub>2</sub>, ZnH<sub>2</sub> and HgH<sub>2</sub>. <br /><br /> Infrared emission spectra of BeH, MgH, CaH, SrH, ZnH and CdH free radicals contained several vibration-rotation bands in their <sup>2</sup>SIGMA<sup>+</sup> ground electronic state. The new data were combined with all the previous ground state data from diode laser infrared spectra and pure rotation spectra available in the literature. Spectroscopic constants, i. e. , vibrational band origins, rotational, centrifugal distortion, and spin-rotation interaction constants, were determined for each observed vibrational level by least-squares fitting of all the data. In addition, the data from all isotopologues were fitted simultaneously using the empirical Dunham-type energy level expression for <sup>2</sup>SIGMA<sup>+</sup> states, and correction parameters due to the breakdown of the Born-Oppenheimer approximation were determined. The equilibrium internuclear distances (<em>r</em><sub>e</sub>) of <sup>9</sup>BeH, <sup>24</sup>MgH, <sup>40</sup>CaH, <sup>88</sup>SrH, <sup>64</sup>ZnH and <sup>114</sup>CdH were determined to be 1. 342424(2), 1. 729721(1), 2. 002360(1), 2. 146057(1), 1. 593478(2) and 1. 760098(3) angstroms, respectively, and the corresponding <em>r</em><sup>e</sup> distances for <sup>9</sup>BeD, <sup>24</sup>MgD, <sup>40</sup>CaD, <sup>88</sup>SrD, <sup>64</sup>ZnD and <sup>114</sup>CdD are 1. 341731(2), 1. 729157(1), 2. 001462(1), 2. 145073(1), 1. 593001(2) and 1. 759695(2) angstroms, respectively. <br /><br /> Gaseous BeH<sup>2</sup>, MgH<sup>2</sup>, ZnH<sup>2</sup> and HgH<sup>2</sup> molecules were discovered and unambiguously identified by their high-resolution infrared emission spectra. The &nu;<sub>3</sub> antisymmetric stretching fundamental band and several hot bands in the &nu;<sub>3</sub> region were rotationally analyzed, and spectroscopic constants were obtained for almost all naturally-occurring isotopologues. The rotational constants of the 000 ground states were used to determine the <em>r</em><sub>0</sub> internuclear distances. For BeH<sub>2</sub>, ZnH<sub>2</sub>, ZnD<sub>2</sub>, HgH<sub>2</sub> and HgD<sub>2</sub> molecules, the rotational constants of the 000, 100, 01<sup>1</sup>0 and 001 levels were used to determine the equilibrium rotational constants (<em>B</em><sub>e</sub>) and the associated equilibrium internuclear distances <em>r</em><sub>e</sub>. The <em>r</em><sub>e</sub> distances of ZnH<sub>2</sub> and ZnD<sub>2</sub> differed by about 0. 01%, and those of HgH<sub>2</sub> and HgD<sub>2</sub> differed by about 0. 005%. These discrepancies were larger than the statistical uncertainties by one order of magnitude, and were attributed to the breakdown of the Born-Oppenheimer approximation.
37

Late Transition Metal Complexes Bearing Functionalized N-Heterocyclic Carbenes and the Catalytic Hydrogenation of Polar Double Bonds

O, Wylie Wing Nien 16 August 2013 (has links)
Late transition metal complexes of silver(I), rhodium(I), ruthenium(II), palladium(II) and platinum(II) containing a nitrile-functionalized N-heterocyclic carbene ligand (C-CN) were prepared. The nitrile group on the C–CN ligand was shown to undergo hydrolysis under basic conditions, leading to a silver(I) carbene complex with a primary-amido functional group, and a trimetallic complex of palladium(II) with a partially hydrolyzed C–N–N–C donor ligand. The reduction of a nitrile-functionalized imidazolium salt in the presence of nickel(II) chloride under mild conditions yielded an axially chiral square-planar nickel(II) complex containing a unique primary-amino functionalized N-heterocyclic carbene ligand (C-NH2). A transmetalation reaction moved this chelating C–NH2 ligand from nickel(II) to ruthenium(II), osmium(II), and iridium(III), yielding important catalysts for the hydrogenation of polar double bonds. The ruthenium(II) complex, [Ru(p-cymene)(C–NH2)Cl]PF6 catalyzed the transfer and H2-hydrogenation of ketones. The bifunctional hydride complex, [Ru(p-cymene)(C–NH2)H]PF6, which contains a Ru–H/N–H couple showed no activity under catalytic conditions unless when activated by a base. The outer-sphere mechanism involving bifunctional catalysis of ketone reduction is disfavored according to experimental and theoretical studies and an inner-sphere mechanism is proposed involving the decoordination of the amine donor from the C–NH2 ligand. The ruthenium(II) complex [RuCp*(C–NH2)py]PF6 showed higher activity than the iridium(III) complex [IrCp*(C–NH2)Cl]PF6 in the hydrogenation of ketones. This ruthenium(II) complex also catalyzes the hydrogenation of an aromatic ester, a ketimine, and the hydrogenolysis of styrene oxide. We proposed an alcohol-assisted outer sphere bifunctional mechanism for both systems based on experimental findings and theoretical calculations. The cationic iridium(III) hydride complex, [IrCp*(C–NH2)H]PF6 , was prepared and this failed to react with a ketone in the absence of base. The crucial role of the alkoxide base was demonstrated in the activation of this hydride complex in catalysis. Calculations support the proposal that the base deprotonates the amine group of this hydride complex and triggers the migration of the hydride to the η5-Cp* ring producing a neutral iridium(I) amido complex. This system contains an active Ir–H/N–H couple required for the outer sphere hydrogenation of ketones in the bifunctional mechanism.
38

Late Transition Metal Complexes Bearing Functionalized N-Heterocyclic Carbenes and the Catalytic Hydrogenation of Polar Double Bonds

O, Wylie Wing Nien 16 August 2013 (has links)
Late transition metal complexes of silver(I), rhodium(I), ruthenium(II), palladium(II) and platinum(II) containing a nitrile-functionalized N-heterocyclic carbene ligand (C-CN) were prepared. The nitrile group on the C–CN ligand was shown to undergo hydrolysis under basic conditions, leading to a silver(I) carbene complex with a primary-amido functional group, and a trimetallic complex of palladium(II) with a partially hydrolyzed C–N–N–C donor ligand. The reduction of a nitrile-functionalized imidazolium salt in the presence of nickel(II) chloride under mild conditions yielded an axially chiral square-planar nickel(II) complex containing a unique primary-amino functionalized N-heterocyclic carbene ligand (C-NH2). A transmetalation reaction moved this chelating C–NH2 ligand from nickel(II) to ruthenium(II), osmium(II), and iridium(III), yielding important catalysts for the hydrogenation of polar double bonds. The ruthenium(II) complex, [Ru(p-cymene)(C–NH2)Cl]PF6 catalyzed the transfer and H2-hydrogenation of ketones. The bifunctional hydride complex, [Ru(p-cymene)(C–NH2)H]PF6, which contains a Ru–H/N–H couple showed no activity under catalytic conditions unless when activated by a base. The outer-sphere mechanism involving bifunctional catalysis of ketone reduction is disfavored according to experimental and theoretical studies and an inner-sphere mechanism is proposed involving the decoordination of the amine donor from the C–NH2 ligand. The ruthenium(II) complex [RuCp*(C–NH2)py]PF6 showed higher activity than the iridium(III) complex [IrCp*(C–NH2)Cl]PF6 in the hydrogenation of ketones. This ruthenium(II) complex also catalyzes the hydrogenation of an aromatic ester, a ketimine, and the hydrogenolysis of styrene oxide. We proposed an alcohol-assisted outer sphere bifunctional mechanism for both systems based on experimental findings and theoretical calculations. The cationic iridium(III) hydride complex, [IrCp*(C–NH2)H]PF6 , was prepared and this failed to react with a ketone in the absence of base. The crucial role of the alkoxide base was demonstrated in the activation of this hydride complex in catalysis. Calculations support the proposal that the base deprotonates the amine group of this hydride complex and triggers the migration of the hydride to the η5-Cp* ring producing a neutral iridium(I) amido complex. This system contains an active Ir–H/N–H couple required for the outer sphere hydrogenation of ketones in the bifunctional mechanism.
39

Síntese por reação do TiFe nanoestruturado para o armazenamento de hidrogênio, a partir da moagem de alta energia de misturas de pós de TiH2 e Fe / Reaction synthesis of nanostructured TiFe for hydrogen storage from high-energy ball milling of TiH2 and Fe powders mixtures

Railson Bolsoni Falcão 02 May 2016 (has links)
Neste trabalho investigou-se a obtenção do composto TiFe a partir da moagem de alta energia de misturas de pós de TiH2 e Fe, seguida de aquecimento sob vácuo para a reação de síntese. No lugar do Ti, o TiH2 foi escolhido como precursor em razão de sua fragilidade, benéfica para a diminuição da aderência dos pós ao ferramental de moagem. Foram preparados dois lotes de misturas obedecendo-se a relação Ti:Fe de 50:50 e 56:44. Ambos foram processados em um moinho do tipo planetário por tempos que variaram de 5 até 40 horas, sob atmosfera de argônio de elevada pureza. Em todos os experimentos foram mantidos constantes a velocidade de rotação do prato do moinho, a quantidade de amostra, o diâmetro e o número de bolas. As amostras moídas foram caracterizadas por calorimetria exploratória diferencial (DSC), termogravimetria (TG), microscopia eletrônica de varredura (MEV), difração de raios X (DRX) e fluorescência de raios X por dispersão de energia (EDXRF). Apenas TiH2 e Fe foram observados nas amostras moídas, com um grau crescente de mistura em função do tempo de moagem. O composto TiFe nanoestruturado (12,5 a 21,4nm) foi obtido de forma majoritária em todas as amostras após a reação de síntese promovida pelo tratamento térmico a 600ºC (873K). As amostras reagidas foram caracterizadas por microscopia eletrônica de transmissão (MET) e DRX. Um equipamento do tipo Sievert, operando sob um fluxo constante (modo dinâmico), foi utilizado para levantar as curvas termodinâmicas de absorção e dessorção de hidrogênio. Todas as amostras absorveram hidrogênio à temperatura ambiente (~298K) sem a necessidade de ciclos térmicos de ativação. Os melhores resultados foram obtidos com as amostras moídas por 25 e 40 horas, de composição não estequiométrica 56:44. Tais amostras absorveram e dessorveram hidrogênio à temperatura ambiente, sob os platôs de aproximadamente 6,4 e 2,2bar (~0,6 e 0,2MPa), respectivamente. A capacidade máxima de armazenamento foi de 1,06% em massa de hidrogênio (H:M~0,546), sob pressão de até 11bar (1,1MPa), com reversão de até 1,085% em massa de hidrogênio (H:M~0,559), sob pressão de até 1bar (0,1MPa). Estas amostras também apresentaram maior cinética de absorção e dessorção de hidrogênio com fluxos de 1,23 (25h) e 2,86cm3/g.min. (40h). Tais resultados são atribuídos à variação composicional da fase TiFe e à maior quantidade de TiH2 livre. / In this work high-energy ball milling from TiH2 and Fe powder mixtures, followed by post-heating under vacuum, were performed for the reaction synthesis of TiFe compound. TiH2 was used instead of Ti due to its brittleness, preventing strong particles adhesion to the grinding balls and vial walls. Two mixtures batches were prepared following Ti:Fe ratios of 50:50 and 56:44. Both of them were dry-milled in a planetary mill for times ranging from 5 to 40 hours, under high purity argon atmosphere. The speed of main disk rotation, the amount of sample, number and diameter of the balls were kept constant in all experiments. As-milled samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray fluorescence (EDXRF). As-milled materials presented only Fe and TiH2 phases showing increased mixture degree with the milling time. After heat treatment at 600ºC (873K), nanostructured TiFe compound (12.5 to 21.4nm) was mostly formed in all samples. Reacted samples were characterized by transmission electron microscopy (TEM) and XRD. Hydrogen absorption and desorption thermodynamics curves were determined in a Sievert-type apparatus operating at constant flow (dynamic mode). All samples absorbed hydrogen at room temperature (~298K) requiring no thermal activation cycles. Best results were seen on samples milled at 25 and 40 hours, with non-stoichiometric composition 56:44. Those samples absorbed and desorbed hydrogen at plateaus of 6.4 and 2.2bar (~0.6 and 0.2MPa), respectively. Maximum hydrogen storage capacity was 1.06 wt% (H:M~0,546) at 11bar (1.1MPa), with reversion of 1.085 wt% (H:M~0,559) at 1bar (0.1MPa). Higher hydrogen absorption and desorption kinetics were observed in those samples, as well, with flows of 1.23 (25h) and 2.86cm3/g.min. (40h). Such results were assigned to the compositional variation of TiFe phase and to the largest amount of free TiH2.
40

Preparation and Characterization of Nanoscopic Solid State Hydrogen Storage Materials

Surrey, Alexander 30 September 2016 (has links)
Die Speicherung von Wasserstoff in Form von Hydriden im festen Aggregatzustand hat den Vorteil einer hohen volumetrischen und gravimetrischen Wasserstoffspeicherdichte, die sowohl für die stationäre als auch die mobile Anwendung nötig ist. Um die Anforderungen dieser Anwendungen erfüllen zu können, müssen die Speichereigenschaften dieser Materialien weiter verbessert werden. Als zentrales Konzept dieser Dissertation wird die Nanostrukturierung verfolgt, die eine vielversprechende Strategie zur Modifizierung der thermodynamischen und kinetischen Eigenschaften von Hydriden darstellt. Die Transmissionselektronenmikroskopie (TEM) stellt dabei eine unverzichtbare Untersuchungsmethode solch nanoskopischer Materialien dar. Als problematisch erweist sich dabei die durch Radiolyse hervorgerufene Zersetzung der meisten Hydride bei der Beleuchtung mit dem abbildenden Elektronenstrahl. Im ersten Teil dieser Arbeit wird eine Methodik entwickelt um dieses Phänomen quantitativ mit Hilfe von Valenzelektronenenergieverlustspektroskopie zu untersuchen. Hierzu kommt kugelgemahlenes MgH2 als Modellsystem zum Einsatz. Die Dehydrierung kann quantitativ durch die inelastische Streuung der hochenergetischen Elektronen am MgH2-Plasmon erklärt werden. Eine Lösung dieses grundlegenden Problems wird theoretisch an Hand von Multislice TEM-Kontrastsimulationen untersucht. Hierbei wird ein TEM Experiment unter Wasserstoff bei Umgebungsdruck anstatt unter Vakuum simuliert, was mit Hilfe eines speziellen TEM Halters, in dem das Gas durch elektronentransparente Fenster eingeschlossen ist, realisiert werden kann. Im zweiten Teil wird der Einfluss des Nanoconfinements (Nanoeinschließung), einer speziellen Form der Nanostrukturierung, des komplexen Hydrids LiBH4 auf dessen Wasserstoffspeichereigenschaften untersucht, wofür eine neuartige nanoporöse aerogel-ähnliche Kohlenstoff-Gerüststruktur zum Einsatz kommt. Diese wird durch Salt Templating synthetisiert - einer simplen und nachhaltigen Methode zur Herstellung nanoporöser kohlenstoffbasierter Materialien mit großen Porenvolumina. Es wird gezeigt, dass durch das Nanoconfinement die Wasserstoffdesorptionstemperatur, die für makroskopisches LiBH4 bei über 400 °C liegt, auf 310 °C sinkt und die Desorption bereits bei 200 °C einsetzt. Eine teilweise Rehydrierung ist unter moderaten Bedingungen (100 bar und 300 °C) möglich, wobei die Reversibilität durch eine partielle Oxidation des amorphen Bor gehemmt ist. Im Gegensatz zu Beobachtungen einer aktuellen Veröffentlichung von in hoch geordnetem, nanoporösen Kohlenstoff eingebetteten LiBH4 deuten die in-situ TEM-Heizexperimente der vorliegenden Arbeit darauf hin, dass beide Reaktionsprodukte (B und LiH) in den Poren des aerogel-ähnlichen Kohlenstoffs verbleiben.:List of Figures vi 1. Introduction 1 2. Fundamentals 5 2.1. Solid state hydrogen storage 5 2.2. Thermodynamics 7 2.3. Magnesiumhydride, MgH2 9 2.4. Lithiumborohydride, LiBH4 10 2.5. Nanoconfinement 12 2.5.1. Nanoconfinement of MgH2 13 2.5.2. Nanoconfinement of LiBH4 15 2.6. Radiation damage of hydrides in the TEM 17 3. Theoretical and Experimental Methods 19 3.1. Ball milling 19 3.2. X-ray diffraction analysis 19 3.3. Thermal Characterization 20 3.3.1. Differential Scanning Calorimetry 20 3.3.2. Coupled Thermogravimetry and Mass Spectroscopy 21 3.4. Melt infiltration of LiBH4 21 3.5. Solid State Nuclear Magnetic Resonance 21 3.6. Transmission Electron Microscopy 23 3.6.1. In-situ TEM Heating 25 3.6.2. Environmental TEM 26 3.6.3. Electron Energy Loss Spectroscopy 28 3.6.4. Multislice Simulations 33 4. Electron Beam induced Dehydrogenation of MgH2 38 4.1. Microscopic Model of Hydrogen Release 38 4.2. Determination of Characteristic Electron Doses 39 4.3. Beam Damage Mechanism 42 4.4. Thickness Dependence of the Electron Dose 43 4.5. Conclusions for the Electron Beam Induced Dehydrogenation 47 4.6. Multislice Simulations for ETEM Studies 47 4.6.1. Methods of the Multislice Simulations 48 4.6.2. Results and Discussion of the Multislice Simulations 50 4.6.3. Conclusions of the Multislice Simulations 54 5. Nanoconfinement of LiBH4 in Aerogel-Like Carbon 56 5.1. Nanoporous Carbon Scaffolds 56 5.2. DSC Analysis of Melt Infiltration 58 5.3. XRD Analysis 59 5.4. Thermogravimetry and Mass Spectrometry Analysis 60 5.4.1. Hydrogen Desorption Properties of Nanoconfined LiBH4 60 5.4.2. Rehydrogenation of Nanoconfined LiBH4 63 5.5. In-situ STEM Analysis 63 5.6. Solid State 11B NMR 67 6. Conclusions 69 A. Appendix 71 A.1. Derivation of the Fourier-Log Deconvolution 71 A.2. Derivation of Equation 4.2 73 Bibliography 75 / Storing hydrogen in solid hydrides has the advantage of high volumetric and gravimetric hydrogen densities, which are needed for both stationary and mobile applications. However, the hydrogen storage properties of these materials must be further improved in order to meet the requirements of these applications. Nanostructuring, which represents one of the central approaches of this thesis, is a promising strategy to tailor the thermodynamic and kinetic properties of hydrides. Transmission electron microscopy (TEM) is an indispensable tool for the structural characterization of such nanosized materials, however, most hydrides degrade fast upon irradiation with the imaging electron beam due to radiolysis. In the first part of this work, a methodology is developed to quantitatively investigate this phenomenon using valence electron energy loss spectroscopy on ball milled MgH2 as a model system. The dehydrogenation can be quantitatively explained by the inelastic scattering of the incident high energy electrons by the MgH2 plasmon. A solution to this fundamental problem is theoretically studied by virtue of multislice TEM contrast simulations of a windowed environmental TEM experiment, which allows for performing the TEM analysis in hydrogen at ambient pressure rather than vacuum. In the second part, the effect of the nanoconfinement of the complex hydride LiBH4 on its hydrogen storage properties is investigated. For this, a novel nanoporous aerogel-like carbon scaffold is used, which is synthesized by salt templating - a facile and sustainable technique for the production of nanoporous carbon-based materials with large pore volumes. It is shown that the hydrogen desorption temperature, which is above 400 °C for bulk LiBH4, is reduced to 310 °C upon this nanoconfinement with an onset temperature as low as 200 °C. Partial rehydrogenation can be achieved under moderate conditions (100 bar and 300 °C), whereby the reversibility is hindered by the partial oxidation of amorphous boron. In contrast to recent reports on LiBH4 nanoconfined in highly ordered nanoporous carbon, in-situ heating in the TEM indicates that both decomposition products (B and LiH) remain within the pores of the aerogel-like carbon.:List of Figures vi 1. Introduction 1 2. Fundamentals 5 2.1. Solid state hydrogen storage 5 2.2. Thermodynamics 7 2.3. Magnesiumhydride, MgH2 9 2.4. Lithiumborohydride, LiBH4 10 2.5. Nanoconfinement 12 2.5.1. Nanoconfinement of MgH2 13 2.5.2. Nanoconfinement of LiBH4 15 2.6. Radiation damage of hydrides in the TEM 17 3. Theoretical and Experimental Methods 19 3.1. Ball milling 19 3.2. X-ray diffraction analysis 19 3.3. Thermal Characterization 20 3.3.1. Differential Scanning Calorimetry 20 3.3.2. Coupled Thermogravimetry and Mass Spectroscopy 21 3.4. Melt infiltration of LiBH4 21 3.5. Solid State Nuclear Magnetic Resonance 21 3.6. Transmission Electron Microscopy 23 3.6.1. In-situ TEM Heating 25 3.6.2. Environmental TEM 26 3.6.3. Electron Energy Loss Spectroscopy 28 3.6.4. Multislice Simulations 33 4. Electron Beam induced Dehydrogenation of MgH2 38 4.1. Microscopic Model of Hydrogen Release 38 4.2. Determination of Characteristic Electron Doses 39 4.3. Beam Damage Mechanism 42 4.4. Thickness Dependence of the Electron Dose 43 4.5. Conclusions for the Electron Beam Induced Dehydrogenation 47 4.6. Multislice Simulations for ETEM Studies 47 4.6.1. Methods of the Multislice Simulations 48 4.6.2. Results and Discussion of the Multislice Simulations 50 4.6.3. Conclusions of the Multislice Simulations 54 5. Nanoconfinement of LiBH4 in Aerogel-Like Carbon 56 5.1. Nanoporous Carbon Scaffolds 56 5.2. DSC Analysis of Melt Infiltration 58 5.3. XRD Analysis 59 5.4. Thermogravimetry and Mass Spectrometry Analysis 60 5.4.1. Hydrogen Desorption Properties of Nanoconfined LiBH4 60 5.4.2. Rehydrogenation of Nanoconfined LiBH4 63 5.5. In-situ STEM Analysis 63 5.6. Solid State 11B NMR 67 6. Conclusions 69 A. Appendix 71 A.1. Derivation of the Fourier-Log Deconvolution 71 A.2. Derivation of Equation 4.2 73 Bibliography 75

Page generated in 0.0685 seconds