• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design And Implementation Of Microwave Lumped Components And System Integration Using Mems Technology

Temocin, Engin Ufuk 01 September 2006 (has links) (PDF)
This thesis presents the design and fabrication of coplanar waveguide to microstrip transitions and planar spiral inductors, and the design of metal-insulator-metal capacitors, a planar band-pass, and a low-pass filter structures as an application for the inductors and capacitors using the RF MEMS technology. This thesis also includes a packaging method for RF MEMS devices with the use of benzocyclobutene as bonding material. The transition structures are formed by four different methods between coplanar waveguide end and microstrip end, and they are analyzed in 1-20 GHz. Very low loss transitions are obtained by maintaining constant characteristic impedance which is the same as the port impedance through the transition structures. The planar inductors are formed by square microstrip spirals on a glass substrate. Using the self-inductance propery of a conductive strip and the mutual inductance between two conductor strips in a proper arrangement, the inductance value of each structure is defined. Inductors from 0.7 nH up to 20 nH have been designed and fabricated. The metal-insulator-metal capacitors are formed by two coplanar waveguide structures. In the intersection, one end of a coplanar waveguide is placed on top of the end of the other coplanar waveguide with a dielectric layer in between. Using the theory of parallel plate capacitors, the capacitance of each structure is adjusted by the dimensions of the coplanar waveguides, which obviously adjust the area of intersection. Capacitors from 0.3 pF up to 9.8 pF have been designed. A low-pass filter and a band-pass filter are designed using the capacitors and inductors developed in this thesis. In addition to lumped elements, the interconnecting transmission lines, junctions and input-output lines are added to filter topologies. The RF MEMS packaging is realized on a coplanar waveguide structure which stands on a silicon wafer and encapsulated by a silicon wafer. The capping chip stands on the BCB outer ring which promotes adhesion and provides semi hermeticity. Keywords: Transition between transmission lines, planar spiral inductor, metal-insulator-metal capacitor, RF MEMS packaging, surface micromachining.

Page generated in 0.1127 seconds