• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic Hydrodeoxygenation of Bio-Oil Model Compounds (Ethanol, 2-Methyltetrahydrofuran) over Supported Transition Metal Phosphides

Bui, Phuong Phuc Nam 24 January 2013 (has links)
The objective of this project is to investigate hydrodeoxygenation (HDO), a crucial step in the treatment of bio-oil, on transition metal phosphide catalysts. The study focuses on reactions of simple oxygenated compounds present in bio-oil -- ethanol and 2-methyltetrahydrofuran (2-MTHF). The findings from this project provide fundamental knowledge towards the hydrodeoxygenation of more complex bio-oil compounds. Ultimately, the knowledge contributes to the design of optimum catalysts for upgrading bio-oil. A series of transition metal phosphides was prepared and tested; however, the focus was on Ni2P/SiO2. Characterization techniques such as X-ray diffraction (XRD), temperature-programmed reduction and desorption (TPR and TPD), X-ray photoelectron spectroscopy (XPS), and chemisorption were used. In situ Fourier transform infrared (FTIR) spectroscopy was employed to monitor the surface of Ni2P during various experiments such as: CO and pyridine adsorption and transient state of ethanol and 2-MTHF reactions. The use of these techniques allowed for a better understanding of the role of the catalyst during deoxygenation. / Ph. D.
2

Crystal Chemistry of the Ti<sub>3</sub>Sn-D, Nb<sub>4</sub>MSi-D and Pd-Ni-P Systems

Vennström, Marie January 2003 (has links)
<p>Future energy systems based on hydrogen as energy carrier require reliable ways for storing hydrogen gas in safe, clean and efficient ways. Metal hydrides absorb hydrogen gas reversibly, making them suitable for storage applications. Investigations of the crystal structures of these materials contribute to an understanding of the factors which can influence the absorption<i>. </i></p><p>Three systems, Ti<sub>3</sub>Sn-D, Nb<sub>4</sub>MSi-D (M=Co or Ni) and Pd-Ni-P, have been investigated in this thesis. Various solid state synthesis techniques have been used for sample preparation. The crystal structures have been studied using x-ray and neutron diffraction techniques.</p><p>Three metal hydride phases were found in the Ti<sub>3</sub>Sn-D system upon hydrogenation. Deuterium occupies titanium octahedra and the applied deuterium pressure induces the phase transitions. The distances between the deuterium atoms increase from 2.47 Å in orthorhombic Ti<sub>3</sub>SnD<sub>0.80</sub> to 4.17 Å in cubic Ti<sub>3</sub>SnD.</p><p>The Nb<sub>4</sub>MSi-D system (M=Co or Ni) readily absorbs deuterium at room temperature and 90 kPa deuterium pressure to give a deuterium content of Nb<sub>4</sub>MSiD<sub>~2.5</sub>. Two interstitial voids, both coordinated by four niobium atoms arranged in a tetrahedral configuration, accommodate deuterium atoms. </p><p>Two ternary phases and a solid solution of nickel in Pd<sub>3</sub>P have been synthesised and the crystal structures determined. PdNi<sub>2</sub>P is orthorhombic and crystallises in the MgCuAl<sub>2</sub>-type structure: an ordered derivative of the Re<sub>3</sub>B-type structure. Pd<sub>8</sub>Ni<sub>31</sub>P<sub>16</sub> is a tetragonal high-temperature phase stable at 700°C with 110 atoms in the unit cell. Pd<sub>2.7</sub>Ni<sub>0.3</sub>P<sub>0.94</sub> has the cementite-type structure with mixed occupancy of palladium and nickel at one of the two non-equivalent crystallographic metal positions.</p>
3

Crystal Chemistry of the Ti3Sn-D, Nb4MSi-D and Pd-Ni-P Systems

Vennström, Marie January 2003 (has links)
Future energy systems based on hydrogen as energy carrier require reliable ways for storing hydrogen gas in safe, clean and efficient ways. Metal hydrides absorb hydrogen gas reversibly, making them suitable for storage applications. Investigations of the crystal structures of these materials contribute to an understanding of the factors which can influence the absorption. Three systems, Ti3Sn-D, Nb4MSi-D (M=Co or Ni) and Pd-Ni-P, have been investigated in this thesis. Various solid state synthesis techniques have been used for sample preparation. The crystal structures have been studied using x-ray and neutron diffraction techniques. Three metal hydride phases were found in the Ti3Sn-D system upon hydrogenation. Deuterium occupies titanium octahedra and the applied deuterium pressure induces the phase transitions. The distances between the deuterium atoms increase from 2.47 Å in orthorhombic Ti3SnD0.80 to 4.17 Å in cubic Ti3SnD. The Nb4MSi-D system (M=Co or Ni) readily absorbs deuterium at room temperature and 90 kPa deuterium pressure to give a deuterium content of Nb4MSiD~2.5. Two interstitial voids, both coordinated by four niobium atoms arranged in a tetrahedral configuration, accommodate deuterium atoms. Two ternary phases and a solid solution of nickel in Pd3P have been synthesised and the crystal structures determined. PdNi2P is orthorhombic and crystallises in the MgCuAl2-type structure: an ordered derivative of the Re3B-type structure. Pd8Ni31P16 is a tetragonal high-temperature phase stable at 700°C with 110 atoms in the unit cell. Pd2.7Ni0.3P0.94 has the cementite-type structure with mixed occupancy of palladium and nickel at one of the two non-equivalent crystallographic metal positions.
4

Advanced transition metal phosphide materials from single-source molecular precursors

January 2012 (has links)
In this thesis, the feasibility of employing organometallic single-source precursors in the preparation of advanced transition metal pnictide materials such as colloidal nanoparticles and films has been investigated. In particular, the ternary FeMnP phase was targeted as a model for preparing advanced heterobimetallic phosphide materials, and the iron-rich Fe 3 P phase was targeted due to its favorable ferromagnetic properties as well as the fact that the preparation of advanced Fe 3 P materials has been elusive by commonly used methods. Progress towards the synthesis of advanced Fe 2-x Mn x P nanomaterials and films was facilitated by the synthesis of the novel heterobimetallic complexes FeMn(CO) 8 (μ-PR 1 R 2 ) (R 1 = H, R 2 = H or R 1 = H, R 2 = Ph), which contain the relatively rare μ-PH2 and μ-PPhH functionalities. Iron rich Fe 2-x Mn x P nanoparticles were obtained by thermal decomposition of FeMn(CO) 8 (μ-PH 2 ) using solution-based synthetic methods, and empirical evidence suggested that oleic acid was responsible for manganese depletion. Films containing Fe, Mn, and P with the desired stoichiometric ratio of 1:1:1 were prepared using FeMn(CO) 8 (μ-PH 2 ) in a simple low-pressure metal-organic chemical vapor deposition (MOCVD) apparatus. Although the elemental composition of the precursor was conserved in the deposited film material, spectroscopic evidence indicated that the films were not composed of pure-phase FeMnP, but were actually mixtures of crystalline FeMnP and amorphous FeP and Mn x O y . A new method for the preparation of phase-pure ferromagnetic Fe 3 P films on quartz substrates has also been developed. This approach involved the thermal decomposition of the single-source precursors H 2 Fe 3 (CO) 9 PR (R = t Bu or Ph) at 400 °C. The films were deposited using a simple home-built MOCVD apparatus and were characterized using a variety of analytical methods. The films exhibited excellent phase purity, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and field-dependent magnetization measurements, the results of which were all in good agreement with measurements obtained from bulk Fe 3 P. As-deposited Fe 3 P films were found to be amorphous, and little or no magnetic hysteresis was observed in plots of magnetization versus applied field. Annealing the Fe 3 P films at 550 °C resulted in improved crystallinity as well as the observation of magnetic hysteresis.

Page generated in 0.0734 seconds