• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SPECTROSCOPY AND STRUCTURES OF METAL-CYCLIC HYDROCARBON COMPLEXES

Lee, Jung Sup 01 January 2010 (has links)
Metal-cyclic hydrocarbon complexes were prepared in a laser-vaporization molecular beam source and studied by single-photon zero electron kinetic energy (ZEKE) and IR-UV resonant two-photon ionization (R2PI) spectroscopy. The ionization energies and vibrational frequencies of the metal complexes were measured from the ZEKE spectra. Metal-ligand bonding and low-lying electronic states of the neutral and ionized complexes were analyzed by combining the ZEKE measurements with density functional theory (DFT) calculations. In addition, C-H stretching frequencies were measured from the R2PI spectra. In this dissertation, metal complexes of 1, 3, 5, 7-cyclo-octatetraene (COT), toluene, p-xylene, mesitylene, hexamethylbenzene, biphenyl, naphthalene, pyrene, perylene, and coronene were studied. For each metal-ligand complex, different effects from the metal coordination have been identified. Although free COT is a nonaromatic molecule with a tub-shaped structure, the group III transition metal atoms (Sc, Y, and La) donate two electrons to a partially filled π orbital of COT, making the ligand a dianion. As a result, metal coordination converts COT into a planar, aromatic structure and the resulting complex exhibits a half-sandwich structure. For the Sc(methylbenzene) complexes, the benzene rings of the ligands are bent and the π electrons are localized in a 1, 4-diene fashion due to differential Sc binding with the carbon atoms of the rings. Due to differential metal binding, the degenerate d orbitals split and the Sc-methylbenzene complexes prefer the low-spin ground electronic states. In addition, as the number of methyl group substituents in the ligand increases, the ionization energies (IEs) of the Sc-methylbenzene complexes decrease. However, Ti, V, or Co coordination does not disrupt the delocalized π electron network within the carbon skeleton in the high-spin ground states of the metal complexes. For group VI metal (Cr, Mo, and W)-bis(toluene) complexes, methyl substitution on the benzene ring yields complexes with four rotational conformers of 0°, 60°, 120°, and 180° conformation angles between two methyl groups. In addition, variable-temperature ZEKE spectroscopy using He, Ar, or their mixtures has determined the totally eclipsed 0° rotamer to be the most stable. When there are two equivalent benzene rings, the metal (Ti, Zr or Hf) binds to both the benzene rings of biphenyl, or the metal (Li) binds to one of the benzene rings of naphthalene. On the other hand, the metal (Li) favors the ring-over binding site of the benzene ring with a higher π electron content and aromaticity in pyrene, perylene, and coronene.

Page generated in 0.408 seconds