• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Metal-Organic Emitters for OLED Applications: Photophysics, Molecular Stacking, and Device Engineering

Li, Shan 05 1900 (has links)
This dissertation addresses the following issues. Firstly, to reduce the efficiency roll-off at high current densities or brightness, of green, fluorescent organic light-emitting (OLEDs), we introduced a double-doped structure into the emissive layer. It includes two thin buffer layers and a broad emissive region stacked with two doped layers. This modification better controls charge injection/transport and recombination, boosting EL and PL efficiency. Secondly, aiming for highly efficient phosphorescent OLEDs surpassing the theoretical EQE limit of ~20%, a new class of platinum(II)-based phosphorescent complexes have been designed and synthesized serving as both emitters and electron transporters in straightforward undoped bi-/tri-layered devices. Achieving this without costly doping techniques, these OLEDs boast a relatively low turn-on voltage, extremely high power efficiency, and stable emission color dependent on applied voltages. This design anticipates reduced or no efficiency roll-off even at brightness levels exceeding 20,000 cd/m2, far surpassing DOE technology requirements (only 500-1500 cd/m2). This work sheds light on the influence of molecular design on crystalline packing and optoelectronic device performance and accelerates the development of efficient and stable Pt-based emitters.

Page generated in 0.0892 seconds