• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1040
  • 251
  • 141
  • 123
  • 41
  • 29
  • 22
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 13
  • 10
  • Tagged with
  • 1856
  • 653
  • 500
  • 478
  • 459
  • 455
  • 177
  • 170
  • 165
  • 163
  • 153
  • 149
  • 141
  • 131
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The Hall effect in glassy metals /

Houari, Ahmed January 1986 (has links)
No description available.
132

Mechanical Characterization And Numerical Simulation Of A Light-weight Aluminum A359 Metal-matrix Composite

DeMarco, James P 01 January 2011 (has links)
Aluminum metal-matrix composites (MMCs) are well positioned to replace steel in numerous manufactured structural components, due to their high strength-to-weight and stiffness ratios. For example, research is currently being conducted in the use of such materials in the construction of tank entry doors, which are currently made of steel and are dangerously heavy for military personnel to lift and close. However, the manufacture of aluminum MMCs is inefficient in many cases due to the loss of material through edge cracking during the hot rolling process which is applied to reduce thick billets of as-cast material to usable sheets. In the current work, mechanical characterization and numerical modeling of as-cast aluminum A359-SiCp-30% is employed to determine the properties of the composite and identify their dependence on strain rate and temperature conditions. Tensile and torsion tests were performed at a variety of strain rates and temperatures. Data obtained from tensile tests were used to calibrate the parameters of a material model for the composite. The material model was implemented in the ANSYS finite element software suite, and simulations were performed to test the ability of the model to capture the mechanical response of the composite under simulated tension and torsion tests. A temperature- and strain rate-dependent damage model extended the constitutive model to capture the dependence of material failure on testing or service conditions. Several trends in the mechanical response were identified through analysis of the dependence of experimentally-obtained material properties on temperature and strain rate. The numerical model was found to adequately capture strain rate and temperature dependence of the stressstrain curves in most cases. Ductility modeling allowed prediction of stress and strain conditions iv which would lead to rupture, as well as identification of areas of a solid model which are most likely to fail under a given set of environmental and load conditions.
133

Electrical conduction in discontinuous gold films on an insulating subtrate /

Dryer, Joseph Ernest January 1972 (has links)
No description available.
134

Microcalorimetric heats of adsorption, surface residence times and sticking probabilities of metals on metal-oxide, and silicon substrates /

Starr, David E. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 159-165).
135

Infrared absorption in thin metallic films /

Liddiard, Kevin Charles. January 1973 (has links) (PDF)
Thesis (M.Sc.) -- University of Adelaide, Dept. of Physics, 1974.
136

Dynamic Nuclear Polarization in Samarium Doped Lanthanum Magnesium Nitrate

Byvik, Charles E. 22 August 2013 (has links)
The dynamic nuclear polarization of hydrogen nuclei by the solid effect in single crystals of samarium doped lanthanum magnesium nitrate (Sm:LMN) has been studied theoretically and experimentally. The equations of evolution governing the dynamic nuclear polarization by the solid effect have been derived in detail using the spin temperature theory and the complete expression for the steady-state enhancement of the nuclear polarization has been calculated. For well-resolved solid effect transitions at microwave frequencies Ï ~ Ï <sub>e</sub> ± Ï <sub>n</sub>, the expression for the steady-state enhancement differs from the expression obtained by the rate equation approach by small terms which become zero at Ï ~ Ï <sub>e</sub> ± Ï <sub>n</sub> Experimental enhancements of the proton polarization were obtained for eight crystals at 9.2 GHz and liquid helium temperatures. The samarium concentration ranged from 0.1 percent to 1.1 percent as determined by X-ray fluorescence. A peak enhancement of 181 was measured for a 1.1 percent Sm:LMN crystal at 3.0<sup>"</sup> K. The maximum enhancements extrapolated with the theory using the experimental data for peak enhancement versus microwave power and correcting for leakage, agree with the ideal enhancement (24O in this experiment) within experimental error for three of the crystals. The calculated satellite separation was within 6 percent of the measured separation for each of the enhancement curves and the peak positive and negative enhancements were equal for all but two of the crystals. The nuclear spin"lattice relaxation time was measured for one of the crystals between l.6<sup>"</sup> K and 4.2<sup>"</sup> K. To account for nuclear spin"lattice relaxation, spin diffusion theory in the rapid airrusion limit was incorporated into the results of the spin temperature theory of the solid effect. The experimental results indicate that the spin temperature theory is a quantitatively correct approach for the description of dynamic nuclear polarization by the solid effect for well"resolved solid effect transitions. / Ph. D.
137

Growth, dislocations, and extinction of cobalt whiskers

Bailey, Billy Hugh. January 1964 (has links)
Call number: LD2668 .T4 1964 B15 / Master of Science
138

Synthesis and characterization of solid metal oxide nanaostructures for biodiesel production

Man, Lai-fan, 文麗芬 January 2013 (has links)
Solid basic metal oxides have been extensively studied for biodiesel production via transesterification, researches are now focused on attaining high catalytic activity and durability towards one-step alkali transesterification, as well as high stability towards high free fatty acids (FFAs) and water content in oils for simultaneous esterification and transesterification, to enable their commercialization in industry. This work encompasses the design and characterization of three mixed metal oxide systems, with a detailed evaluation of their potential application in catalyzing transesterification of camelina oil to yield biodiesel. Na0.1Ca0.9TiO3 nanorods were synthesized via a simple alkaline hydrothermal pathway with ethanol as a co-solvent. Owing to their high basic strength of 11<H_<15, 92.7% biodiesel conversion was reached at mild reaction conditions. However, the catalyst showed poor recycle performance, probably attributed to the leaching of active species during transesterification, as revealed by X-ray photoelectron spectroscopy (XPS). A new class of mesoporous Zn/MgO catalyst was synthesized by a simple alkaline hydrothermal method. Zn/MgO calcinated at 600 ℃ exhibited 88.7% biodiesel conversion at 120 ℃ with 3% w/w catalyst, 24:1 methanol to oil molar ratio for 8 h. The catalyst could be reused for five runs without significant loss of activity (≥84.0% biodiesel conversion). The excellent catalyst performance is possibly attributed to its high surface area and large mesopores. The higher surface basic sites density as compared to mesoporous MgO, as indicated by higher total basicity determined from benzoic titration and an increased lattice O2- percentage as revealed from XPS, attributing to its superior catalytic activity. A series of nano-sized MgO-ZnO catalysts with precise stoichiometry were successfully prepared by a simple EDTA complexing approach. Mg0.5Zn0.5 calcinated at 600 ℃ gave a maximum biodiesel conversion of 89.3% at 120 ℃ with 3% w/w catalyst, 24:1 methanol to oil molar ratio for 8 h. Its superior catalytic performance to MgO is mainly associated with the high basic sites density as determined from benzoic titration and XPS. The biodiesel conversion retained over 83.0% for five runs. The enhanced catalyst activity and stability might be contributed by the incorporation of Zn2+ for Mg2+ in MgO lattice and a high homogeneous distribution of MgO particles on ZnO, with the formation of Mg-O-Zn bond as evidenced by Fourier transform infrared spectroscope (FTIR) and XPS. The catalyst also demonstrated high tolerance to FFAs (10% w/w) and water (2% w/w) content, which make it desirable for direct conversion of oils with high FFAs level to biodiesel in a single-step process. Lastly, a Zn/La2O3 catalyst was synthesized by a simple hydrothermal pathway. It exhibits a higher basic strength than La2O3, as evidenced by the slightly lower O1s binding energy determined by XPS, leading to a higher catalytic activity. The enhanced catalytic activity and stability is likely contributed by the incorporation of Zn2+ for La3+ in the lattice. Using 1% w/w Zn/La2O3 as catalyst, the highest biodiesel conversion of 92.7% was obtained at 120 ℃ for 16 h with 36:1 methanol to oil molar ratio. The effective catalyst displayed a biodiesel conversion greater than 84.0% for four runs. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
139

Novel zirconium oxide-based ceramic composites

Zhe, Xiaoli January 1999 (has links)
No description available.
140

Adsorption of metals on single crystal substrates

Barnes, C. J. January 1986 (has links)
No description available.

Page generated in 0.0468 seconds