• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 94
  • 12
  • 9
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 290
  • 218
  • 68
  • 66
  • 65
  • 64
  • 39
  • 37
  • 36
  • 33
  • 31
  • 30
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Intracellular regulation of matrix metalloproteinase-2 activity: the roles of caveolin-1 and troponin I phosphorylation

Chow, Ava Kalyca 11 1900 (has links)
Matrix metalloproteinase2 (MMP2) was recently revealed to have targets and actions within the cardiac myocyte. In ischemia/reperfusion (I/R) injury, MMP2 is activated and degrades troponin I (TnI) and actinin. The regulation of intracellular MMP2 activity is relatively unknown and is thus the subject of this thesis. The localization of MMP2 in caveolae of endothelial cells suggests that caveolin1 (Cav1) may play a role in regulating MMP2. Whether Cav1 is responsible for regulating MMP2 in the heart is unknown. A Cav1 knockout mouse model was used to explore the role Cav1 may play in the regulation of MMP2 activity. The initial studies found that MMP2 and Cav1 were colocalized in cardiomyocytes and that MMP2 activity in Cav1/ hearts was markedly enhanced. Additionally, the caveolin scaffolding domain inhibited MMP2 activity in a concentrationdependent manner. To explore whether increased MMP2 in Cav1/ hearts translates to impaired cardiac function, Cav1+/+ and Cav1/ isolated working hearts were physiologically challenged with increasing increments of left atrial preload followed by increasing concentrations of isoproterenol. Cav1/ hearts show similar or better cardiac function compared to Cav1+/+ hearts following preload challenge or adrenergic stimulation in vitro, and this appears unrelated to changes in MMP2. Though the function of Cav1/ hearts appears similar to that of Cav1+/+ hearts during physiological situations, whether this is the case during I/R injury is not known. Cav1+/+ and Cav1/ isolated working mouse hearts exposed to global, noflow ischemia showed no functional differences. However, Cav1/ hearts had significantly higher levels of both TnI and actinin following I/R than Cav1+/+ hearts. Posttranslational modifications of the intracellular MMP2 substrates could alter susceptibility to MMP2 proteolysis. Isolated working mouse hearts were exposed to isoproterenol and/or I/R injury to examine the phosphorylation status of TnI. Isoproterenol and I/R both result in the phosphorylation of TnI, however, isoproterenol lead to a more highly phosphorylated form of TnI than that observed in hearts exposed I/R alone. These and subsequent studies will further reveal the molecular mechanisms that underlie the complex interactions between Cav1 and MMP2. This may eventually lead to a novel avenue of therapeutic intervention for heart diseases.
42

Molecular Mechanisms of MMP9 Expression in Astrocytes Induced by Heme and Iron

Hasim, Mohamed Shaad 07 December 2012 (has links)
The disruption of the blood-brain barrier (BBB) occurs after ischemic and hemorrhagic stroke and contributes to secondary brain damage. Matrix metalloproteinase-9 (MMP9) has been identified to be the main mediator of post-stroke BBB disruption. It is unknown whether deposition of heme/iron in the brain following stroke would affect MMP9 expression. In this study, I have demonstrated that heme/iron up-regulated MMP9 expression in rat astrocytes and that this upregulation was most likely due to reactive oxygen species (ROS) generated by heme/iron deposition on cells. ROS can activate AP-1 and NFκB signaling pathways which were responsible for increased MMP9 expression. Inhibiting AP-1 and NFκB decreased MMP9 expression. Heme/iron deposition also activated Nrf-2 and increased the expression of neuroprotective heme oxygenase-1. My study suggests that heme and iron deposition generates ROS and increases MMP9 expression through AP-1 and NFκB signaling pathways and that targeting these pathways or clearance of heme and iron may modulate MMP9 expression for reduced damage.
43

Regulation of Metalloproteinase-dependent Ectodomain Shedding in Cytokine Biology and Inflammation

Murthy, Aditya 11 January 2012 (has links)
In 1962, Gross and Lapiere described collagenolytic activity in the degradation of tadpole tails during amphibian metamorphosis. This activity was later attributed to a collagenase enzyme belonging to the matrix metalloproteinase family. Over the past 49 years, steady growth in the field of metalloproteinase biology has uncovered that degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes. The regulatory roles of these enzymes in numerous aspects of mammalian biology remains poorly understood. This thesis investigates the metalloproteinase ADAM17 and its natural inhibitor TIMP3 in acute and chronic inflammation. My work describes the generation of new murine experimental systems of compartmentalized ADAM17 or TIMP3 deficiency and their applications in acute liver inflammation (i.e. fulminant hepatitis and T-cell mediated autoimmune hepatitis) and atopic dermatitis. Loss of Timp3 protected mice against fulminant hepatic failure caused by activation of the death receptor Fas. We determined that TIMP3 simultaneously promotes pro-apoptotic signaling through TNFR1 while suppressing anti-apoptotic EGFR activation in the liver. Mechanistically, we identified that ADAM17 is critical in shedding TNFR1 and EGFR ligands (e.g. Amphiregulin, HB-EGF, TGF) and extended this finding to clinically relevant drug-induced hepatitis. Adult TIMP3 deficient mice also exhibited spontaneous accumulation of CD4+ T cells in the liver. Consequently, polyclonal T cell activation with the lectin Concanavalin A (con A) in a model of autoimmune hepatitis resulted in accelerated liver injury. We identified that this immunopathology relied on TNF bioavailability as mice lacking both Timp3 and Tnf were resistant to con A. Using bone marrow chimeras we established that non-hematopoietic tissues were the physiologically relevant source of TIMP3 in vivo, thereby highlighting an immunosuppressive role for this stromal metalloproteinase inhibitor in cellular immunity. Finally, we investigated epithelial:immune crosstalk in the epidermis by generating tissue-specific ADAM17 deficiency in basal keratinocytes. These mice developed spontaneous inflammatory skin disease that was physiologically consistent with atopic dermatitis. Focused investigation of keratinocyte-specific signaling deregulated by ADAM17 deficiency revealed its requirement for tonic Notch activation, which in turn antagonized transcriptional activity of AP-1 transcription factors on the promoters of epithelial cytokines TSLP and G-CSF. In summary, these works identify cellular mechanisms governing cytokine-mediated communication between epithelial and immune cells to modulate inflammation. The findings that TIMP3 and ADAM17 act as regulators of key inflammatory, proliferative and developmental pathways provide impetus to expand our understanding of this important family of enzymes in mammalian signal transduction.
44

Regulation of Metalloproteinase-dependent Ectodomain Shedding in Cytokine Biology and Inflammation

Murthy, Aditya 11 January 2012 (has links)
In 1962, Gross and Lapiere described collagenolytic activity in the degradation of tadpole tails during amphibian metamorphosis. This activity was later attributed to a collagenase enzyme belonging to the matrix metalloproteinase family. Over the past 49 years, steady growth in the field of metalloproteinase biology has uncovered that degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes. The regulatory roles of these enzymes in numerous aspects of mammalian biology remains poorly understood. This thesis investigates the metalloproteinase ADAM17 and its natural inhibitor TIMP3 in acute and chronic inflammation. My work describes the generation of new murine experimental systems of compartmentalized ADAM17 or TIMP3 deficiency and their applications in acute liver inflammation (i.e. fulminant hepatitis and T-cell mediated autoimmune hepatitis) and atopic dermatitis. Loss of Timp3 protected mice against fulminant hepatic failure caused by activation of the death receptor Fas. We determined that TIMP3 simultaneously promotes pro-apoptotic signaling through TNFR1 while suppressing anti-apoptotic EGFR activation in the liver. Mechanistically, we identified that ADAM17 is critical in shedding TNFR1 and EGFR ligands (e.g. Amphiregulin, HB-EGF, TGF) and extended this finding to clinically relevant drug-induced hepatitis. Adult TIMP3 deficient mice also exhibited spontaneous accumulation of CD4+ T cells in the liver. Consequently, polyclonal T cell activation with the lectin Concanavalin A (con A) in a model of autoimmune hepatitis resulted in accelerated liver injury. We identified that this immunopathology relied on TNF bioavailability as mice lacking both Timp3 and Tnf were resistant to con A. Using bone marrow chimeras we established that non-hematopoietic tissues were the physiologically relevant source of TIMP3 in vivo, thereby highlighting an immunosuppressive role for this stromal metalloproteinase inhibitor in cellular immunity. Finally, we investigated epithelial:immune crosstalk in the epidermis by generating tissue-specific ADAM17 deficiency in basal keratinocytes. These mice developed spontaneous inflammatory skin disease that was physiologically consistent with atopic dermatitis. Focused investigation of keratinocyte-specific signaling deregulated by ADAM17 deficiency revealed its requirement for tonic Notch activation, which in turn antagonized transcriptional activity of AP-1 transcription factors on the promoters of epithelial cytokines TSLP and G-CSF. In summary, these works identify cellular mechanisms governing cytokine-mediated communication between epithelial and immune cells to modulate inflammation. The findings that TIMP3 and ADAM17 act as regulators of key inflammatory, proliferative and developmental pathways provide impetus to expand our understanding of this important family of enzymes in mammalian signal transduction.
45

Correlation Between MMP-2 and -9 Levels and Local Stresses in Arteries Using a Heterogeneous Mechanical Model

Kim, Yu Shin 06 July 2007 (has links)
The mechanical environment influences vascular smooth muscle cell (VSMC) functions related to the vascular remodeling. However, the relationships are not appropriately addressed by most mechanical models of arteries assuming homogeneity. Accounting for the effects of heterogeneity is expected to be important to our understanding of VSMC functions. We hypothesized that local stresses computed using a heterogeneous mechanical model of arteries positively correlate to the levels of matrix metalloproteinase (MMP)-2 and -9 in situ. We developed a mathematical model of an arterial wall accounting for nonlinearity, residual strain, anisotropy, and structural heterogeneity. The distributions of elastin and collagen fibers, quantified using their optical properties, showed significant structural heterogeneity. Anisotropy was represented by the direction of collagen fibers, which was measured by the helical angle of VSMC nuclei. The recruiting points of collagen fibers were computed assuming a uniform strain of collagen fibers under physiological loading conditions; an assumption motivated by the morphology. This was supported by observed uniform length and orientation of VSMC nuclei under physiological loading. The distributions of circumferential stresses computed using both heterogeneous and corresponding homogeneous models were correlated to the distributions of expression and activation of MMP-2 and -9 in porcine common carotid arteries, which were incubated in an ex vivo perfusion organ culture system under either normotensive or hypertensive conditions for 48 hours. While strains computed using incompressibility were identical in both models, the heterogeneous model, unlike the homogeneous model, predicted higher circumferential stresses in the outer layer. The tissue levels of MMP-2 and -9 were positively correlated to circumferential stresses computed using the heterogeneous model, which implies that areas of high stress are expected to be sites of localized remodeling and agrees with results from cell culture studies. The results support the role of mechanical stress in vascular remodeling and suggest the importance of structural heterogeneity in studying mechanobiological responses.
46

Anti-arthritic effects of marine-derived compound obtained from gorgonian coral

Sun, Yu-min 19 July 2010 (has links)
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that may affect many tissues and organs but principally attacks synovial joints. All the symptoms of RA are mainly caused by cell inflammation, which results in cellular infiltration and synovial hyperplasia, finally leading to severe bone erosion. Existing drugs (steroids, non-steroid antiinflammatory drugs, disease-modifying anti-rheumatic drugs, etc.) can attenuate the symptoms of RA; however, these drugs also have many side effects. Therefore, it is necessary to discover new drugs for RA. Excavatolide B (Exc-B) is derived from the gorgonian coral. In our preliminary observations, Exc-B strongly inhibited lipopolysaccharide (LPS)-induced proinflammatory inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in RAW264.7 macrophages. The present study also showed that Exc-B significantly attenuates the expressions of osteoclast-like gene, cathepsin K, and matrix metalloproteinase (MMP)-9 in LPS-treated RAW 264.7 cells. Moreover, in the adjuvant-induced RA animal model, Exc-B effectively reduced the swelling and arthritic index from the morphological viewpoint as well as reduced bone erosion and synovial hyperplasia from the pathological viewpoint. Our data indicates that Exc-B can inhibit disease progression in RA. Hence, Exc-B may serve as a useful therapeutic agent for the treatment of RA.
47

Shedding of kidney injury molecule-1 by kidney proximal tubular epithelial cells: the role of matrixmetalloproteinase-3

Lim, Ai Ing., 林艾盈. January 2012 (has links)
Regardless of the original cause and etiology, the progression of kidney disease follows a final common pathway associated with tubulointerstitial injury, in which proximal tubular epithelial cells (PTEC) are instrumental. Kidney injury molecule-1 (KIM-1) is an emerging biomarker of kidney tubular damage. It is markedly expressed and released into urine in various animal models and human kidney diseases. This study aimed to explore the underlying mechanism regulating the release of KIM-1 by PTEC. First, expression and release of KIM-1 by primary cultured human PTEC were examined. In quiescent PTEC, KIM-1 was detected at the plasma membrane and in the cytoplasm. A transwell system, in which PTEC were grown as monolayer on permeable membrane, was used to examine the polarized release of KIM-1. PTEC constitutively released KIM-1 from their apical surface, and the release was independent of gene expression or protein synthesis. The KIM-1 release process by PTEC was enhanced dose- and time-dependently by two important kidney injury mediators, human serum albumin (HSA) and tumor necrosis factor (TNF)-α, and was inhibited by the presence of broad-spectrum inhibitors of matrix metalloproteinases (MMP). Second, the potential sheddases responsible for KIM-1 shedding were identified by quantitative polymerase chain reaction (PCR) array system, in which the gene expression of a panel of MMP members was screened. The gene expression of MMP-3, MMP-7 and MMP-9 was up-regulated by PTEC under HSA or TNF-α activation. Blockade experiments with synthetic MMP inhibitors or MMP gene knockdown by small interfering RNA transfection, revealed that the constitutive or accelerated KIM-1 shedding was mediated by MMP-3, but not MMP-7 or MMP-9. The role of MMP-3 in KIM-1 shedding was further defined by additional data showing the enhanced MMP-3 synthesis by HSA- or TNF-α-stimulated PTEC, and the up-regulated KIM-1 shedding by PTEC following exogenous MMP-3 treatment. Third, the regulatory mechanism of MMP-3-mediated KIM-1 shedding was investigated. Treatment of PTEC with HSA or TNF-α up-regulated the reactive oxygen species (ROS) generation, and its kinetics ran parallel to the increase of KIM-1 shedding and MMP-3 synthesis. In addition, exogenous hydrogen peroxide dose-dependently induced KIM-1 shedding and MMP-3 synthesis, which were abolished by the presence of an oxidation inhibitor. These evidence suggest that ROS play an essential role in regulating the MMP-3-mediated KIM-1 shedding by PTEC. Finally, a mouse model of acute kidney injury induced by renal ischemia and reperfusion (I/R) was established to translate the in vitro findings. Reduced kidney function and increased urinary KIM-1 level were observed in mice after renal I/R treatment. Strikingly, the expression of MMP-3 and KIM-1 in the I/R treated mice was most profound in the S3 segments of the proximal tubules, where is the most susceptible area to oxidative stress. Taken together, these in vivo data have further strengthened the distinct roles of ROS and MMP-3 in KIM-1 shedding during PTEC injury. In conclusion, ROS generated by the injured PTEC activate MMP-3, which release the soluble KIM-1 through the ectodomain shedding process. / published_or_final_version / Medicine / Master / Master of Philosophy
48

Intracellular regulation of matrix metalloproteinase-2 activity: the roles of caveolin-1 and troponin I phosphorylation

Chow, Ava Kalyca Unknown Date
No description available.
49

Molecular Mechanisms of MMP9 Expression in Astrocytes Induced by Heme and Iron

Hasim, Mohamed Shaad 07 December 2012 (has links)
The disruption of the blood-brain barrier (BBB) occurs after ischemic and hemorrhagic stroke and contributes to secondary brain damage. Matrix metalloproteinase-9 (MMP9) has been identified to be the main mediator of post-stroke BBB disruption. It is unknown whether deposition of heme/iron in the brain following stroke would affect MMP9 expression. In this study, I have demonstrated that heme/iron up-regulated MMP9 expression in rat astrocytes and that this upregulation was most likely due to reactive oxygen species (ROS) generated by heme/iron deposition on cells. ROS can activate AP-1 and NFκB signaling pathways which were responsible for increased MMP9 expression. Inhibiting AP-1 and NFκB decreased MMP9 expression. Heme/iron deposition also activated Nrf-2 and increased the expression of neuroprotective heme oxygenase-1. My study suggests that heme and iron deposition generates ROS and increases MMP9 expression through AP-1 and NFκB signaling pathways and that targeting these pathways or clearance of heme and iron may modulate MMP9 expression for reduced damage.
50

Coronary Artery Outcome in Kawasaki Disease: The Role of Matrix Metalloproteinase-9 and Therapeutic Modulation of Its Activity

Lau, Andrew Chun-Ben 26 February 2009 (has links)
Kawasaki disease (KD) is a multisystem vasculitis that results in localized coronary artery elastin breakdown and aneurysm formation. It is the leading cause of acquired heart disease of children in North America. Despite conventional treatment, a significant proportion of patients continue to develop coronary sequelae. The mechanisms of arterial aneurysm formation in KD are not known. Using a murine model of KD, Lactobacillus casei cell wall extract-induced coronary arteritis, the processes leading to coronary aneurysm formation were examined. Vessel damage occurred as a result of the increased enzymatic activity of the elastase, matrix metalloproteinase (MMP)-9. MMP-9 protein and activity levels were elevated in the heart post-disease induction. Expression and activity were specific for and localized to inflamed coronary arteries. The pro-inflammatory cytokine, tumour necrosis factor (TNF)-α, was required for increasing local MMP-9 expression. Importantly, MMP-9-deficient animals had a significantly reduced incidence of elastin breakdown. Furthermore, in a cohort of KD patients, serum MMP-9 did not correlate with coronary outcome, highlighting the importance of local expression of this elastase. Intravenous immunoglobulin (IVIG) and aspirin/salicylate are therapeutic agents in current use for the treatment of KD, though their exact mechanisms of action in KD are not known. The biologic effects of IVIG and salicylate on critical stages of disease development were examined. IVIG and salicylate had differential effects on TNF-α expression, with therapeutic concentrations of IVIG inhibiting, and salicylate inducing, TNF-α expression leading to an indirect modulation of MMP-9 expression. Interestingly, TNF-α expression and MMP-9 activity were both directly inhibited by the metal-chelating drug doxycycline. Treatment of affected mice with doxycycline significantly improved coronary outcome. Inhibiting both the inflammatory response as well as the downstream effects of inflammation were of therapeutic value in this model of KD. These results taken together demonstrate the importance of MMP-9 in the pathogenesis of coronary artery aneurysms in KD. Targeting MMP activity holds the promise of transforming KD from the leading cause of acquired heart disease to a self-limited febrile illness.

Page generated in 0.3756 seconds