Spelling suggestions: "subject:"metallogenic"" "subject:"metalogenese""
1 |
Depósitos de cobre e zinco de Pojuca Corpo Quatro, mineralização do tipo VMS na província Mineral de CarajásSchwarz, Marcelo Ricardo January 2010 (has links)
Este trabalho procura definir o modelo metalogenético do Depósito de Cu/Zn Pojuca Corpo Quatro, localizado na porção norte da Província Mineral de Carajás, utilizando para tanto dados geoquímicos, petrográficos e geométricos da seção vertical -300E. A história geológica e metalogenética do Depósito Pojuca Corpo Quatro é complexa. De idade Arqueana, o Depósito Pojuca Corpo Quatro está hospedado em rochas metavulcanossedimentares do Grupo Igarapé Pojuca, que são correlacionáveis às rochas do Grupo Grão Pará. Devido a sua idade e posicionamento geográfico dentro da Província Mineral de Carajás, o Depósito Pojuca Corpo Quatro sofreu inteferência dos mais diversos processos geológicos ocorridos na região, como deformações, metamorfismo e hidrotermalismo. Os minérios do depósito ocorrem de duas formas diferentes, uma mineralização stratabound (primária), seguindo o bandamento das rochas hospedeiras, e um minério em brechas, vênulas e disseminado (remobilizado ou secundário). Características destas tipologias de minério sugerem diferentes fases de mineralização, sendo a mineralização primária ou stratabound, cuja paragênese é constituida de calcopirita, pirrotita e esfalerita, considerada neste trabalho como sendo do tipo VMS, e a mineralização secundária ou remobilizada, de paragênse formada por pirrotita, calcopirita e molibdenita, descrita como sendo produto de eventos hidrotermais mais jovens, do tipo IOCG. / This paper seeks to define the metallogenic model of the Cu / Zn Deposit of Pojuca Corpo Quatro, located in the northern portion of the Carajas Mineral Province, using geochemical, petrographic and geometric data from vertical section -300E. The geological and metallogenic history of Pojuca Corpo Quatro Deposit is complex. Archean aged, Pojuca Corpo Quatro Deposit is hosted by Igarapé Pojuca Group metavolcanossedimentary rocks, which may correlate with Grand Para Group rocks. Due to it`s age and geographical location within the Carajás Mineral Province, Pojuca Corpo Quatro Deposit suffered inference from various geological processes in the area, as deformation, metamorphism and hydrothermal alteration. The ore occur in two different ways, a stratabound mineralization (primary), following the banding of the host rock and ore in a breccia, veinlets and disseminated (remobilized or secondary). Characteristics of these types of ore suggest different stages of mineralization, the primary or stratabound mineralization, which paragenesis is composed of chalcopyrite, pyrrhotite and sphalerite, is considered here as VMS type and remobilized or secondary ore, formed by pyrrhotite, chalcopyrite and molybdenite, is described as being the product of IOCG-type younger hydrothermal events.
|
2 |
Depósitos de cobre e zinco de Pojuca Corpo Quatro, mineralização do tipo VMS na província Mineral de CarajásSchwarz, Marcelo Ricardo January 2010 (has links)
Este trabalho procura definir o modelo metalogenético do Depósito de Cu/Zn Pojuca Corpo Quatro, localizado na porção norte da Província Mineral de Carajás, utilizando para tanto dados geoquímicos, petrográficos e geométricos da seção vertical -300E. A história geológica e metalogenética do Depósito Pojuca Corpo Quatro é complexa. De idade Arqueana, o Depósito Pojuca Corpo Quatro está hospedado em rochas metavulcanossedimentares do Grupo Igarapé Pojuca, que são correlacionáveis às rochas do Grupo Grão Pará. Devido a sua idade e posicionamento geográfico dentro da Província Mineral de Carajás, o Depósito Pojuca Corpo Quatro sofreu inteferência dos mais diversos processos geológicos ocorridos na região, como deformações, metamorfismo e hidrotermalismo. Os minérios do depósito ocorrem de duas formas diferentes, uma mineralização stratabound (primária), seguindo o bandamento das rochas hospedeiras, e um minério em brechas, vênulas e disseminado (remobilizado ou secundário). Características destas tipologias de minério sugerem diferentes fases de mineralização, sendo a mineralização primária ou stratabound, cuja paragênese é constituida de calcopirita, pirrotita e esfalerita, considerada neste trabalho como sendo do tipo VMS, e a mineralização secundária ou remobilizada, de paragênse formada por pirrotita, calcopirita e molibdenita, descrita como sendo produto de eventos hidrotermais mais jovens, do tipo IOCG. / This paper seeks to define the metallogenic model of the Cu / Zn Deposit of Pojuca Corpo Quatro, located in the northern portion of the Carajas Mineral Province, using geochemical, petrographic and geometric data from vertical section -300E. The geological and metallogenic history of Pojuca Corpo Quatro Deposit is complex. Archean aged, Pojuca Corpo Quatro Deposit is hosted by Igarapé Pojuca Group metavolcanossedimentary rocks, which may correlate with Grand Para Group rocks. Due to it`s age and geographical location within the Carajás Mineral Province, Pojuca Corpo Quatro Deposit suffered inference from various geological processes in the area, as deformation, metamorphism and hydrothermal alteration. The ore occur in two different ways, a stratabound mineralization (primary), following the banding of the host rock and ore in a breccia, veinlets and disseminated (remobilized or secondary). Characteristics of these types of ore suggest different stages of mineralization, the primary or stratabound mineralization, which paragenesis is composed of chalcopyrite, pyrrhotite and sphalerite, is considered here as VMS type and remobilized or secondary ore, formed by pyrrhotite, chalcopyrite and molybdenite, is described as being the product of IOCG-type younger hydrothermal events.
|
3 |
Depósitos de cobre e zinco de Pojuca Corpo Quatro, mineralização do tipo VMS na província Mineral de CarajásSchwarz, Marcelo Ricardo January 2010 (has links)
Este trabalho procura definir o modelo metalogenético do Depósito de Cu/Zn Pojuca Corpo Quatro, localizado na porção norte da Província Mineral de Carajás, utilizando para tanto dados geoquímicos, petrográficos e geométricos da seção vertical -300E. A história geológica e metalogenética do Depósito Pojuca Corpo Quatro é complexa. De idade Arqueana, o Depósito Pojuca Corpo Quatro está hospedado em rochas metavulcanossedimentares do Grupo Igarapé Pojuca, que são correlacionáveis às rochas do Grupo Grão Pará. Devido a sua idade e posicionamento geográfico dentro da Província Mineral de Carajás, o Depósito Pojuca Corpo Quatro sofreu inteferência dos mais diversos processos geológicos ocorridos na região, como deformações, metamorfismo e hidrotermalismo. Os minérios do depósito ocorrem de duas formas diferentes, uma mineralização stratabound (primária), seguindo o bandamento das rochas hospedeiras, e um minério em brechas, vênulas e disseminado (remobilizado ou secundário). Características destas tipologias de minério sugerem diferentes fases de mineralização, sendo a mineralização primária ou stratabound, cuja paragênese é constituida de calcopirita, pirrotita e esfalerita, considerada neste trabalho como sendo do tipo VMS, e a mineralização secundária ou remobilizada, de paragênse formada por pirrotita, calcopirita e molibdenita, descrita como sendo produto de eventos hidrotermais mais jovens, do tipo IOCG. / This paper seeks to define the metallogenic model of the Cu / Zn Deposit of Pojuca Corpo Quatro, located in the northern portion of the Carajas Mineral Province, using geochemical, petrographic and geometric data from vertical section -300E. The geological and metallogenic history of Pojuca Corpo Quatro Deposit is complex. Archean aged, Pojuca Corpo Quatro Deposit is hosted by Igarapé Pojuca Group metavolcanossedimentary rocks, which may correlate with Grand Para Group rocks. Due to it`s age and geographical location within the Carajás Mineral Province, Pojuca Corpo Quatro Deposit suffered inference from various geological processes in the area, as deformation, metamorphism and hydrothermal alteration. The ore occur in two different ways, a stratabound mineralization (primary), following the banding of the host rock and ore in a breccia, veinlets and disseminated (remobilized or secondary). Characteristics of these types of ore suggest different stages of mineralization, the primary or stratabound mineralization, which paragenesis is composed of chalcopyrite, pyrrhotite and sphalerite, is considered here as VMS type and remobilized or secondary ore, formed by pyrrhotite, chalcopyrite and molybdenite, is described as being the product of IOCG-type younger hydrothermal events.
|
4 |
Gênese e evolução da mineralização de criolita, pirocloro e columbita da subfácies albita granito de núcleo, mina pitinga, Amazonas, BrasilMinuzzi, Orlando Renato Rigon January 2005 (has links)
Na mina Pitinga, o minério primário ocorre associado á fácies albita granito do Granito Madeira . Trata-se de uma jazida de Sn de classe mundial, com Nb, Ta e criolita (co-produtos) e Zr, ETR, Y, Li e U (possíveis subprodutos). O minério de criolita ocorre nas subfacíes albita granito de núcleo (AGN) nas formas disseminada (150Mt, teor de 4,2% de Na3AlF6) e de um depósito criolítico maciço DCM (10Mt, teor de 32% de Na3AlF6). A criolita disseminada pertence a duas gerações, ambas quase isótropas e raramente macladas. A criolita magmática ocorre como inclusões em fenocristais de quartzo ou na matriz como cristais subédricos a arredondados, freqüentemente associados com o zircão precoce com o qual encontra-se em equilíbrio (Fig. 18g). a criolita tardia forma agregados irregulares de granulação média a grossa, com zircão + cassiterita + torita + polilitionita + opacos + riebeckita), forma auréolas em zircão e pirocloro com coroas de reação, ou associa-se com mica e/ou zircão em fissuras. Os cristais de criolita podem apresentar micro fissuras preenchidas por thonsenolita e prosopita. O DCM ocorre em sub-superfície. Assemelha-se a um cogumelo lenticular instalado na zona apical, ao longo do eixo central vertical do AGN. É formado por corpos sub-horizontais (+ veios stockworks) de criolita com extensão de até 300m e espessura dr até 30m, com intercalações do AGN. Os corpos se concentram nas Zonas Criolíticas A (superior) e B (inferior), com 115 e 150 m de espessura, respectivamente. Uma terceira zona (Zona Zero), mais superficial, foi parcialmente erodida. São constituídos por criolita (~85% p. vol.) + quartzo + zircão + k-feldspato + galena + gagarinita + xenotímio. A criolita é maclada e pertence a três gerações: nucleada (precoce), caramelo e branca (tardia). Na parte superior do DCM, ocorrem criolita caramelo e nucleada (subordinada). Nos corpos intermediários, criolita caramelo e nucleada ocorrem em iguais proporções. Na parte inferior, predomina a criolita nucleada, a criolita carameo é mais clara e somente aqui, ocorre a criolita branca. Na base da ZCB ocorrem alguns corpos constituídos aparentemente só por criolita branca, com prossança de até 2,20m. em alguns destes corpos, ocorre a fluorita associada e a encaixante é fortemente alterada. Dois novos minerais (waimirita e atroarita) foram descobertos no presente trabalho. As assinaturas dos ETR e Y relacionam, em termos evolutivos e metalogenéticos, a mineralização criolítica e o albita granito. Este, em relação ás demais fácies do Granito Madeira, tem conteúdos de ETR caracterizados por menor fracionamento dos ETRL, enriquecimento relativo em ETRP e anomalias de európio mais intensas. A fluorita magmática (AGB) te razões ETR/Y e ETRL/ETRP ≥ 1 semelhante ao albita granito, e concentração de Y (~ 1.200 ppm) compatível com as de ocorrências associadas a pegmatitos graníticos. Comparativamente à fluorita, a criolita magmática (AGN) é bem mais enriquecida em ETRP e Y. A criolita disseminada tardia é caracterizada por enriquecimento em ETRL e empobrecimento em Y. formou-se em condições de oxi-redução semelhantes às do ambiente magmático. As três gerações de criolita do DCM tem anomalia negativa e Eu manos intensa do que a criolita disseminada (ambianete de formação mais oxidante); da crilita nucleada para a branca ocorrem menores concentrações de Y e ETR e enriquecimento relativo em ETRL. As inclusões fluidas na criolita e quartzo do DCM e da paragênese hidrotermal disseminada na encaixante são em sua maioria primárias e pseudo-secundárias. Predominam IF aquosas e bifásicas. Também ocorrem monofásicas, trifásicas saturadas ou multifásicas. O grau de preenchimento da fase líquida das IF bifásicas varia entre 0,7 e 0,9. a temperatura de fusão final do gelo (TF) na criolita de Zona Zero varia de -1oC a -3oC, na Zona A varia de -1oC a -20oC, com distribuição bimodal, 0oC a -12oC e inferiores a -16oC. Na zona B, a variação das TF é menos ampla, entre -1oC e -15oC com uma tendência da moda da TF de cada nível decrescer do topo em direção à base. As temperaturas de homogeneização total (TH) variam entre 100oC e 300oC, tem forte tendência vertical na Zona Zeroe refletem nas condições físico-químicas do fluido e não processos posteriores. Dois grupos de salinidade estão presentes, em torno de 5% peso eq. NaCl ( criolita não maclada e recristalização da criolita maclada) e outro acima de 10% peso eq. NaCl (criolita maclada). Nas zonas onde a recristalização destrói a criolita maclada, ocorrem aparentemente apenas as IF do grupo de baixa salinidade. A associação de IF, caracterizada pela ampla variação de salinidade e TH, com ausência de CO2, é característica de eventos pós-magmáticos. As relações entre o DCM e mineralização de Nb e Ta no seu entorno foram investigadas. O U-Pb-pirocloro magmático foi afetado por columbitização caracterizada, num estágio inicial, pela perda de Pb e enriquecimento em U e Nb, formando, sucessivamente, Pb-U-pirocloro e o U-pirocloro. O aumento da vacância do sítio A do pirocloro resultou em uma desestabilização e na formação de columbita, com assinaturas geoquímicas de Sn e U herdadas do pirocloro. No pirocloro, paralelamente ao empobrecimento em Pb, ocorreu o enriquecimento em Ca, F, Ce e Sn e empobrecimento em Fé. Na zona de transiçãoentre as subfácies albita granito de núcleo e de borda, ocorrem inversões nestas evoluções o que é interpretada como fruto da diminuição da atividade de flúor no fluido responsável pela columbitização. As relações espaciais entre a distribuição das variedades de pirocloro, columbita e o DCM mostram que a columbitização foi promovida pelo mesmo fluido responsável pela mineralização de criolita, cujo aporte ascendente ocorreu pela zona central do albita granito. Gradientes geoquímicos ligados à perda de F do fluido explicam as descontinuidades geoquímicas nos minerais estudados, assim como, provavelmente, algumas das diferenças entre as paragêneses das subfácies de núcleo e borda do albita granito. Os resultados fornecem importantes informações para a lavra e beneficiamento do minério de Nb e Ta. Os sistemas isotópicos Sm-Nd e 208Pb-207Pb foram utilizados como tentativa de estabelecer a idade e fontes do sistema albita granito - mineralização. Os resultados do primeiro sistema indicam fortes evidências de remobilização, com relações isotópicas entre Sm e Nd alteradas em algumas amostras, não permitindo definição de idades e de εNd. As idades TDM para rocha total em granitos albitizados indicam valores de 1586 Ma e 1529 Ma para as duas amostras que apresentaram resultados coerentes. Nessas amostras, os valores de εNd são de 2,8 e -0,5 calculados para uma idade U/Pb de 1830 Ma para o granito. Esses valores são compatíveis com sistemas gerados no manto, co participação subordinada de crosta continental. O sistema isotópico 208Pb-207Pb forneceu uma idade de 1686 Ma +110/-170 Ma e indicou o envolvimento de fontes mantélica, crustal profunda e crustal rasa. Dentro do erro, a idade obtida pode ser equivalente àquelas das demais fácies do granito Madeira ou ser correlacionável à da Suíte Intrusiva Abonari. Dados geológicos e geoquímicos demonstram a relação direta entre o albita granito e suas mineralizações e descartam, portanto a hipótese de superposição de diferentes eventos metalogenéticos no albita granito. Assim,se a idade mais jovem vier a ser comprovada, ela implicaria correlacionar o albita granito e a mineralização à Suíte Abonari. A distribuição das mineralizações nos corpos Madeira (F, Nb e Sn) e Água boa (Sn), permitem supor que F e Nb relacionam-se a uma mesma fonte, possivelmente mantélica, enquanto o Sn relacina-se a uma fonte crustal. A gênese da mineralização de criolita iniciou-se no estágio magmático (minério disseminado) a partir de um magma excepcionalmente rico em flúor, prosseguiu no estágio pegmatítico e teve seu ápice no estágio hidrotermal. Neste último, fluidos hidrotermais salinos residuais do albita granito, previamente desprovidos de CO2, ascendentes de suas patês inferiores formaram o DCM. Ao longo do processo, o sistema hidrotermal passou a ter um caráter convectivo, incorporando fluidos meteóricos reaquecidos em profundidade, implicando diluições parciais do fluido mineralizador, até a deposição da criolita branca, a mais tardia. / The cryolite ore is associated to the albite granite core facies of the Madeira granite at Pitinga Sn, Nb, Ta mine. In this peralkaline granite, disseminated cryolite is magmatic and hydrothermal. The magmatic paragenesis is characterized by inversions in the classical Bowen crystallization series due to high F contents in the magma. The cryolite massive deposit (CMD) has a mushroom form and is located at the apical granite zone. It is composed by several sub-horizontal bodies with 300 m diameter and until 30 m thick, distributed in two main cryolitic zones A and B with, respectively, 115 m and 150 m thickness. The paragenesis is cryolite (~85%) + quartz, + zircon, + kfeldspath, + galena, + gargarinite and + xenotime. Strong albitization and a pegmatite aureole presence testifie that the CMD zone was a preferential site for fluids circulation since the granite consolidation. The CMD was related to low temperature residual hydrothermal solutions ascending from deeper parts of the albite granite. These solutions distablelized primary minerals promoting cryolite deposition (CMD and disseminated ore) and pyrochlore columbitization and zircon enrichment at the wall rock. Later white cryolite and fluorite depositions are related to fluid dilution by meteoric water apport. Two new minerals were discovered in present work. Aqueous two-phase fluid inclusions (FI), mainly primary and pseudo-secondary, both in the cryolite, quartz and fluorite of the MCD, as well as in the disseminated hydrothermal quartz and the cryolite of the hosting rocks are the predominant types. There also onephase and saturated three-phase or multiphase inclusions. The liquid phase degree of filling of the two-phase FI varies between 0.7 and 0.9. The last ice melting temperature in the Zone Zero cryolite rangers from -1oC the -3oC, in the zone A it ranges from -1oC the -20oC, with a bimodal distribution, from 0oC the -12oC and below -16oC. In the Zone B, this ice melting distribution is narrower, between -1oC and -15oC with the mode of each level decreasing from the top to the base. The total homogenization temperatures (TH) vary between 100oC and 300oC and have a strong vertical trend in the Zone Zero reflecting changes in the fluid physical-chemical conditions instead of alternative process. There are two salinity groups, one around 5% wt. eq. NaCl related to the not twinned cryolite and another one above 10% wt. eq. NaCl in the twinned cryolite. The low salinity group occurs usually in the zones where the recrystallization seems to destroy the cryolite twin. Disseminated cryolite ore formation initiated in the magmatic phase from a fluorine-rich magma, continued in the pegmatitic phase and had its apex in the hydrothermal phase. During the latter, hydrothermal saline residual fluid from the albite granite, with no CO2, formed the MCD and enriched the previous disseminated ore. During this process, the hydrothermal system become convective, mixing with meteoric fluid heated in depth, provoking partial dilutions of the mineralized fluid. Rare earth elements and Y signatures from cryolite and albite granite are closely related. Albite granite is characterized by low LREE fractioning, HRRE enrichment and great negative Eu anomalies. Magmatic fluorite from border albite granite has RRE/Y and LRRE/HRRE > 1, as the albite granite, and Y (~1200 ppm) similar to granitic pegmatites. Magmatic cryolite is more enriched in RRE and Y. late disseminated cryolite is has higher LRRE and lower Y contents and was formed under same magmatic oxi-reduction conditions. The 3 DCM cryolite generations has lower negative Europium anomalies (more oxidizing environment); from nucleated cryolite to white cryolite, RRE and Y contents are progressively lower, and LRRE is enriched. The magmatic U-Pb-pyroclore was alterated by a fluid rich in fluorine. In an initial stage, Pb was lost and U and Nb were enriched resulting in Pb-U and Upyroclores. This process promote an increasing in site A vacancy and the pyroclore structure colappse and result in columbite formation. This mineral maintain the Sn and U geochemical signatures, that are inherited from pyroclore. The Pb impoverishment was followed by Ca, F, Ce and Sn relative enrichment and Fe impoverishment. These behavior change at the transition zone between the nucleus and border albite granite subfacies. It was interpreted as product of reduction on the fluorine activity, that promote the columbitization. Spatial relationships among piroclore varieties and columbite distribution and Cryolite Massive Deposit permited verify that the columbitization process was promoted by the cryolite mineralizing fluid. Gradients linked to F on this fluid probably explains the geochemical discontinuities in the studied minerals, as well as some differences among the nucleus and border albite granite subfacies. Some implications on Nb/Ta mining and recovering are also discussed. Sm-Nd and 208Pb-207Pb sistematic were applied for dating and surce identification for the albite granite and mineralization. Firs system indicates strong RRE remobilization. TDM ages for albitized granites are 1586 My and 1529 My for two samples with coherent results. These samples have εNd 2,8 and -0,5, calculated for 1830 Ma (U/Pb age). The values indicated mantle systems with minour continental crust participation. The 208Pb-207Pb indicate 1868 My + 110/-170 My and source contributions for mantle, deep crust and shallow crust. The age could be related to older granite Madeira facies as to Abonari Intrusive Suite Granite Madeira or be related a Intrusive Suite Abonari. Second possibility needs furthermore works to be confirmed. F and Nb are related to a mantle source. Sn is related to a crustal source.
|
5 |
Gênese e evolução da mineralização de criolita, pirocloro e columbita da subfácies albita granito de núcleo, mina pitinga, Amazonas, BrasilMinuzzi, Orlando Renato Rigon January 2005 (has links)
Na mina Pitinga, o minério primário ocorre associado á fácies albita granito do Granito Madeira . Trata-se de uma jazida de Sn de classe mundial, com Nb, Ta e criolita (co-produtos) e Zr, ETR, Y, Li e U (possíveis subprodutos). O minério de criolita ocorre nas subfacíes albita granito de núcleo (AGN) nas formas disseminada (150Mt, teor de 4,2% de Na3AlF6) e de um depósito criolítico maciço DCM (10Mt, teor de 32% de Na3AlF6). A criolita disseminada pertence a duas gerações, ambas quase isótropas e raramente macladas. A criolita magmática ocorre como inclusões em fenocristais de quartzo ou na matriz como cristais subédricos a arredondados, freqüentemente associados com o zircão precoce com o qual encontra-se em equilíbrio (Fig. 18g). a criolita tardia forma agregados irregulares de granulação média a grossa, com zircão + cassiterita + torita + polilitionita + opacos + riebeckita), forma auréolas em zircão e pirocloro com coroas de reação, ou associa-se com mica e/ou zircão em fissuras. Os cristais de criolita podem apresentar micro fissuras preenchidas por thonsenolita e prosopita. O DCM ocorre em sub-superfície. Assemelha-se a um cogumelo lenticular instalado na zona apical, ao longo do eixo central vertical do AGN. É formado por corpos sub-horizontais (+ veios stockworks) de criolita com extensão de até 300m e espessura dr até 30m, com intercalações do AGN. Os corpos se concentram nas Zonas Criolíticas A (superior) e B (inferior), com 115 e 150 m de espessura, respectivamente. Uma terceira zona (Zona Zero), mais superficial, foi parcialmente erodida. São constituídos por criolita (~85% p. vol.) + quartzo + zircão + k-feldspato + galena + gagarinita + xenotímio. A criolita é maclada e pertence a três gerações: nucleada (precoce), caramelo e branca (tardia). Na parte superior do DCM, ocorrem criolita caramelo e nucleada (subordinada). Nos corpos intermediários, criolita caramelo e nucleada ocorrem em iguais proporções. Na parte inferior, predomina a criolita nucleada, a criolita carameo é mais clara e somente aqui, ocorre a criolita branca. Na base da ZCB ocorrem alguns corpos constituídos aparentemente só por criolita branca, com prossança de até 2,20m. em alguns destes corpos, ocorre a fluorita associada e a encaixante é fortemente alterada. Dois novos minerais (waimirita e atroarita) foram descobertos no presente trabalho. As assinaturas dos ETR e Y relacionam, em termos evolutivos e metalogenéticos, a mineralização criolítica e o albita granito. Este, em relação ás demais fácies do Granito Madeira, tem conteúdos de ETR caracterizados por menor fracionamento dos ETRL, enriquecimento relativo em ETRP e anomalias de európio mais intensas. A fluorita magmática (AGB) te razões ETR/Y e ETRL/ETRP ≥ 1 semelhante ao albita granito, e concentração de Y (~ 1.200 ppm) compatível com as de ocorrências associadas a pegmatitos graníticos. Comparativamente à fluorita, a criolita magmática (AGN) é bem mais enriquecida em ETRP e Y. A criolita disseminada tardia é caracterizada por enriquecimento em ETRL e empobrecimento em Y. formou-se em condições de oxi-redução semelhantes às do ambiente magmático. As três gerações de criolita do DCM tem anomalia negativa e Eu manos intensa do que a criolita disseminada (ambianete de formação mais oxidante); da crilita nucleada para a branca ocorrem menores concentrações de Y e ETR e enriquecimento relativo em ETRL. As inclusões fluidas na criolita e quartzo do DCM e da paragênese hidrotermal disseminada na encaixante são em sua maioria primárias e pseudo-secundárias. Predominam IF aquosas e bifásicas. Também ocorrem monofásicas, trifásicas saturadas ou multifásicas. O grau de preenchimento da fase líquida das IF bifásicas varia entre 0,7 e 0,9. a temperatura de fusão final do gelo (TF) na criolita de Zona Zero varia de -1oC a -3oC, na Zona A varia de -1oC a -20oC, com distribuição bimodal, 0oC a -12oC e inferiores a -16oC. Na zona B, a variação das TF é menos ampla, entre -1oC e -15oC com uma tendência da moda da TF de cada nível decrescer do topo em direção à base. As temperaturas de homogeneização total (TH) variam entre 100oC e 300oC, tem forte tendência vertical na Zona Zeroe refletem nas condições físico-químicas do fluido e não processos posteriores. Dois grupos de salinidade estão presentes, em torno de 5% peso eq. NaCl ( criolita não maclada e recristalização da criolita maclada) e outro acima de 10% peso eq. NaCl (criolita maclada). Nas zonas onde a recristalização destrói a criolita maclada, ocorrem aparentemente apenas as IF do grupo de baixa salinidade. A associação de IF, caracterizada pela ampla variação de salinidade e TH, com ausência de CO2, é característica de eventos pós-magmáticos. As relações entre o DCM e mineralização de Nb e Ta no seu entorno foram investigadas. O U-Pb-pirocloro magmático foi afetado por columbitização caracterizada, num estágio inicial, pela perda de Pb e enriquecimento em U e Nb, formando, sucessivamente, Pb-U-pirocloro e o U-pirocloro. O aumento da vacância do sítio A do pirocloro resultou em uma desestabilização e na formação de columbita, com assinaturas geoquímicas de Sn e U herdadas do pirocloro. No pirocloro, paralelamente ao empobrecimento em Pb, ocorreu o enriquecimento em Ca, F, Ce e Sn e empobrecimento em Fé. Na zona de transiçãoentre as subfácies albita granito de núcleo e de borda, ocorrem inversões nestas evoluções o que é interpretada como fruto da diminuição da atividade de flúor no fluido responsável pela columbitização. As relações espaciais entre a distribuição das variedades de pirocloro, columbita e o DCM mostram que a columbitização foi promovida pelo mesmo fluido responsável pela mineralização de criolita, cujo aporte ascendente ocorreu pela zona central do albita granito. Gradientes geoquímicos ligados à perda de F do fluido explicam as descontinuidades geoquímicas nos minerais estudados, assim como, provavelmente, algumas das diferenças entre as paragêneses das subfácies de núcleo e borda do albita granito. Os resultados fornecem importantes informações para a lavra e beneficiamento do minério de Nb e Ta. Os sistemas isotópicos Sm-Nd e 208Pb-207Pb foram utilizados como tentativa de estabelecer a idade e fontes do sistema albita granito - mineralização. Os resultados do primeiro sistema indicam fortes evidências de remobilização, com relações isotópicas entre Sm e Nd alteradas em algumas amostras, não permitindo definição de idades e de εNd. As idades TDM para rocha total em granitos albitizados indicam valores de 1586 Ma e 1529 Ma para as duas amostras que apresentaram resultados coerentes. Nessas amostras, os valores de εNd são de 2,8 e -0,5 calculados para uma idade U/Pb de 1830 Ma para o granito. Esses valores são compatíveis com sistemas gerados no manto, co participação subordinada de crosta continental. O sistema isotópico 208Pb-207Pb forneceu uma idade de 1686 Ma +110/-170 Ma e indicou o envolvimento de fontes mantélica, crustal profunda e crustal rasa. Dentro do erro, a idade obtida pode ser equivalente àquelas das demais fácies do granito Madeira ou ser correlacionável à da Suíte Intrusiva Abonari. Dados geológicos e geoquímicos demonstram a relação direta entre o albita granito e suas mineralizações e descartam, portanto a hipótese de superposição de diferentes eventos metalogenéticos no albita granito. Assim,se a idade mais jovem vier a ser comprovada, ela implicaria correlacionar o albita granito e a mineralização à Suíte Abonari. A distribuição das mineralizações nos corpos Madeira (F, Nb e Sn) e Água boa (Sn), permitem supor que F e Nb relacionam-se a uma mesma fonte, possivelmente mantélica, enquanto o Sn relacina-se a uma fonte crustal. A gênese da mineralização de criolita iniciou-se no estágio magmático (minério disseminado) a partir de um magma excepcionalmente rico em flúor, prosseguiu no estágio pegmatítico e teve seu ápice no estágio hidrotermal. Neste último, fluidos hidrotermais salinos residuais do albita granito, previamente desprovidos de CO2, ascendentes de suas patês inferiores formaram o DCM. Ao longo do processo, o sistema hidrotermal passou a ter um caráter convectivo, incorporando fluidos meteóricos reaquecidos em profundidade, implicando diluições parciais do fluido mineralizador, até a deposição da criolita branca, a mais tardia. / The cryolite ore is associated to the albite granite core facies of the Madeira granite at Pitinga Sn, Nb, Ta mine. In this peralkaline granite, disseminated cryolite is magmatic and hydrothermal. The magmatic paragenesis is characterized by inversions in the classical Bowen crystallization series due to high F contents in the magma. The cryolite massive deposit (CMD) has a mushroom form and is located at the apical granite zone. It is composed by several sub-horizontal bodies with 300 m diameter and until 30 m thick, distributed in two main cryolitic zones A and B with, respectively, 115 m and 150 m thickness. The paragenesis is cryolite (~85%) + quartz, + zircon, + kfeldspath, + galena, + gargarinite and + xenotime. Strong albitization and a pegmatite aureole presence testifie that the CMD zone was a preferential site for fluids circulation since the granite consolidation. The CMD was related to low temperature residual hydrothermal solutions ascending from deeper parts of the albite granite. These solutions distablelized primary minerals promoting cryolite deposition (CMD and disseminated ore) and pyrochlore columbitization and zircon enrichment at the wall rock. Later white cryolite and fluorite depositions are related to fluid dilution by meteoric water apport. Two new minerals were discovered in present work. Aqueous two-phase fluid inclusions (FI), mainly primary and pseudo-secondary, both in the cryolite, quartz and fluorite of the MCD, as well as in the disseminated hydrothermal quartz and the cryolite of the hosting rocks are the predominant types. There also onephase and saturated three-phase or multiphase inclusions. The liquid phase degree of filling of the two-phase FI varies between 0.7 and 0.9. The last ice melting temperature in the Zone Zero cryolite rangers from -1oC the -3oC, in the zone A it ranges from -1oC the -20oC, with a bimodal distribution, from 0oC the -12oC and below -16oC. In the Zone B, this ice melting distribution is narrower, between -1oC and -15oC with the mode of each level decreasing from the top to the base. The total homogenization temperatures (TH) vary between 100oC and 300oC and have a strong vertical trend in the Zone Zero reflecting changes in the fluid physical-chemical conditions instead of alternative process. There are two salinity groups, one around 5% wt. eq. NaCl related to the not twinned cryolite and another one above 10% wt. eq. NaCl in the twinned cryolite. The low salinity group occurs usually in the zones where the recrystallization seems to destroy the cryolite twin. Disseminated cryolite ore formation initiated in the magmatic phase from a fluorine-rich magma, continued in the pegmatitic phase and had its apex in the hydrothermal phase. During the latter, hydrothermal saline residual fluid from the albite granite, with no CO2, formed the MCD and enriched the previous disseminated ore. During this process, the hydrothermal system become convective, mixing with meteoric fluid heated in depth, provoking partial dilutions of the mineralized fluid. Rare earth elements and Y signatures from cryolite and albite granite are closely related. Albite granite is characterized by low LREE fractioning, HRRE enrichment and great negative Eu anomalies. Magmatic fluorite from border albite granite has RRE/Y and LRRE/HRRE > 1, as the albite granite, and Y (~1200 ppm) similar to granitic pegmatites. Magmatic cryolite is more enriched in RRE and Y. late disseminated cryolite is has higher LRRE and lower Y contents and was formed under same magmatic oxi-reduction conditions. The 3 DCM cryolite generations has lower negative Europium anomalies (more oxidizing environment); from nucleated cryolite to white cryolite, RRE and Y contents are progressively lower, and LRRE is enriched. The magmatic U-Pb-pyroclore was alterated by a fluid rich in fluorine. In an initial stage, Pb was lost and U and Nb were enriched resulting in Pb-U and Upyroclores. This process promote an increasing in site A vacancy and the pyroclore structure colappse and result in columbite formation. This mineral maintain the Sn and U geochemical signatures, that are inherited from pyroclore. The Pb impoverishment was followed by Ca, F, Ce and Sn relative enrichment and Fe impoverishment. These behavior change at the transition zone between the nucleus and border albite granite subfacies. It was interpreted as product of reduction on the fluorine activity, that promote the columbitization. Spatial relationships among piroclore varieties and columbite distribution and Cryolite Massive Deposit permited verify that the columbitization process was promoted by the cryolite mineralizing fluid. Gradients linked to F on this fluid probably explains the geochemical discontinuities in the studied minerals, as well as some differences among the nucleus and border albite granite subfacies. Some implications on Nb/Ta mining and recovering are also discussed. Sm-Nd and 208Pb-207Pb sistematic were applied for dating and surce identification for the albite granite and mineralization. Firs system indicates strong RRE remobilization. TDM ages for albitized granites are 1586 My and 1529 My for two samples with coherent results. These samples have εNd 2,8 and -0,5, calculated for 1830 Ma (U/Pb age). The values indicated mantle systems with minour continental crust participation. The 208Pb-207Pb indicate 1868 My + 110/-170 My and source contributions for mantle, deep crust and shallow crust. The age could be related to older granite Madeira facies as to Abonari Intrusive Suite Granite Madeira or be related a Intrusive Suite Abonari. Second possibility needs furthermore works to be confirmed. F and Nb are related to a mantle source. Sn is related to a crustal source.
|
6 |
Metalogênese do depósito de Cu Cerro dos Martins, RS.Toniolo, João Angelo January 2004 (has links)
Este trabalho revisa a geologia e apresenta dados inéditos do Depósito de Cobre Cerro dos Martins (DCM), incluindo geocronologia Pb-Pb em zircão, inclusões fluidas, isótopos estáveis (C, O e S), composição isotópica do Sr e geoquímica de elementos maiores e traços das rochas vulcânicas encaixantes. O depósito está hospedado na seqüência vulcano-sedimentar do Grupo Bom Jardim, da Bacia do Camaquã, do Neoproterozóico do Escudo Sul Rio-grandense, e possui reservas calculadas de 1.450.000 t, com teor médio de 0,83% Cu. O depósito consiste de um conjunto de veios sulfetados que preenchem fraturas de direção N40º-60ºW em rochas andesíticas e sedimentares clásticas, com disseminações confinadas em níveis de siltito, arenito, andesito e conglomerado, da Formação Hilário do Grupo Bom Jardim. Os minerais do minério filoneano são a calcosina e bornita com calcopirita, pirita, galena e esfalerita subordinadas. Digenita, covelita, malaquita cuprita e azurita ocorrem como minério secundário em ganga constituída de carbonatos, quartzo, minerais argilosos, barita e rara hematita. A composição química das vulcânicas (elementos maiores e traços, incluindo ETR) indicam uma afinidade alcalina para o vulcanismo relacionado à Formação Hilário na região do Cerro dos Martins. Um corpo de quartzo-diorito, intrusivo nas rochas vulcânicas e sedimentares, mostrou idade de 550 ±5 Ma (Pb-Pb em zircões) indicando um valor mínimo para a geração do minério do DCM. Esta idade confirma a posição estratigráfica desta rocha na Formação Acampamento Velho e também fornece uma idade mínima para a deposição da seqüência vulcano-sedimentar encaixante do DCM. Os sulfetos do DCM mostram δS34 CDT com valores relativamente homogêneos entre - 6.2 e + 0.9‰ (n= 7). O valor de δS34 CDT da calcopirita, levemente positivo (+0.9‰), indica uma origem magmática para o S, mas os valores negativos encontrados nestes sulfetos, poderiam indicar o envolvimento de outras fontes com enxofre reduzido. Entretanto, a presença de hematita nas paragêneses minerais indica que o minério foi formado sob condições oxidantes, modificando a composição isotópica original do enxofre magmático (δS34 CDT ~ 0‰) para valores negativos. As baritas analisadas apresentam valores com δS34 CDT entre +9.25 e +10.65‰ (n=4) indicando deposição em condições oxidantes, originadas pela mistura de um fluido magmático-hidrotermal com água meteórica. A composição isotópica do C das calcitas do DCM varia com δC13 PDB entre - 1,90 a -4,45‰, interpretada como resultante da mistura entre carbono de fonte magmática com mármores do embasamento. Inclusões fluidas em quartzo do minério indicam temperaturas de deposição entre 157 e 273 °C com mediana de 215 °C (n = 45). A composição isotópica do oxigênio da água em equilibrio com a calcita do fluido hidrotermal (T= 215 °C) mostra valores de δ O18 SMOW entre 3 e 14, indicando H2O de origem magmática, com contribuição de água meteórica. A razão Sr87/Sr86 das mesmas calcitas mostram valores entre 0,7068 – 0,7087, de crosta superior. Rochas plutônicas e vulcânicas do escudo com idades próximas de 550 Ma possuem razões iniciais Sr87/Sr86 entre 0,704 – 0,710, compatíveis com aquelas encontradas nas calcitas da mineralização. Os fluidos hidrotermais do magmatismo shoshonítico-alcalino com idade de 595 Ma e Sr87/Sr86 entre 0,7041 a 0,7053, também são candidatos a fonte do Sr dos carbonatos hidrotermais, mas necessitariam de um componente mais radiogênico. Assim, a fonte de C-O e Sr das calcitas do minério pode ter sido originada diretamente de um fluido magmático-hidrotermal ou de uma mistura entre este fluido e mármores do embasamento. Portanto, o depósito Cerro dos Martins é interpretado como de origem magmática-hidrotermal, relacionado ao evento magmático alcalinoshoshonítico, pós-colisional da Orogênese Dom Feliciano, com idade entre 595-550 Ma. Novos modelos exploratórios para depósitos de cobre no Escudo do Rio Grande do Sul devem considerar o magmatismo alcalino na gênese dos depósitos.
|
7 |
Metalogênese do depósito de Cu Cerro dos Martins, RS.Toniolo, João Angelo January 2004 (has links)
Este trabalho revisa a geologia e apresenta dados inéditos do Depósito de Cobre Cerro dos Martins (DCM), incluindo geocronologia Pb-Pb em zircão, inclusões fluidas, isótopos estáveis (C, O e S), composição isotópica do Sr e geoquímica de elementos maiores e traços das rochas vulcânicas encaixantes. O depósito está hospedado na seqüência vulcano-sedimentar do Grupo Bom Jardim, da Bacia do Camaquã, do Neoproterozóico do Escudo Sul Rio-grandense, e possui reservas calculadas de 1.450.000 t, com teor médio de 0,83% Cu. O depósito consiste de um conjunto de veios sulfetados que preenchem fraturas de direção N40º-60ºW em rochas andesíticas e sedimentares clásticas, com disseminações confinadas em níveis de siltito, arenito, andesito e conglomerado, da Formação Hilário do Grupo Bom Jardim. Os minerais do minério filoneano são a calcosina e bornita com calcopirita, pirita, galena e esfalerita subordinadas. Digenita, covelita, malaquita cuprita e azurita ocorrem como minério secundário em ganga constituída de carbonatos, quartzo, minerais argilosos, barita e rara hematita. A composição química das vulcânicas (elementos maiores e traços, incluindo ETR) indicam uma afinidade alcalina para o vulcanismo relacionado à Formação Hilário na região do Cerro dos Martins. Um corpo de quartzo-diorito, intrusivo nas rochas vulcânicas e sedimentares, mostrou idade de 550 ±5 Ma (Pb-Pb em zircões) indicando um valor mínimo para a geração do minério do DCM. Esta idade confirma a posição estratigráfica desta rocha na Formação Acampamento Velho e também fornece uma idade mínima para a deposição da seqüência vulcano-sedimentar encaixante do DCM. Os sulfetos do DCM mostram δS34 CDT com valores relativamente homogêneos entre - 6.2 e + 0.9‰ (n= 7). O valor de δS34 CDT da calcopirita, levemente positivo (+0.9‰), indica uma origem magmática para o S, mas os valores negativos encontrados nestes sulfetos, poderiam indicar o envolvimento de outras fontes com enxofre reduzido. Entretanto, a presença de hematita nas paragêneses minerais indica que o minério foi formado sob condições oxidantes, modificando a composição isotópica original do enxofre magmático (δS34 CDT ~ 0‰) para valores negativos. As baritas analisadas apresentam valores com δS34 CDT entre +9.25 e +10.65‰ (n=4) indicando deposição em condições oxidantes, originadas pela mistura de um fluido magmático-hidrotermal com água meteórica. A composição isotópica do C das calcitas do DCM varia com δC13 PDB entre - 1,90 a -4,45‰, interpretada como resultante da mistura entre carbono de fonte magmática com mármores do embasamento. Inclusões fluidas em quartzo do minério indicam temperaturas de deposição entre 157 e 273 °C com mediana de 215 °C (n = 45). A composição isotópica do oxigênio da água em equilibrio com a calcita do fluido hidrotermal (T= 215 °C) mostra valores de δ O18 SMOW entre 3 e 14, indicando H2O de origem magmática, com contribuição de água meteórica. A razão Sr87/Sr86 das mesmas calcitas mostram valores entre 0,7068 – 0,7087, de crosta superior. Rochas plutônicas e vulcânicas do escudo com idades próximas de 550 Ma possuem razões iniciais Sr87/Sr86 entre 0,704 – 0,710, compatíveis com aquelas encontradas nas calcitas da mineralização. Os fluidos hidrotermais do magmatismo shoshonítico-alcalino com idade de 595 Ma e Sr87/Sr86 entre 0,7041 a 0,7053, também são candidatos a fonte do Sr dos carbonatos hidrotermais, mas necessitariam de um componente mais radiogênico. Assim, a fonte de C-O e Sr das calcitas do minério pode ter sido originada diretamente de um fluido magmático-hidrotermal ou de uma mistura entre este fluido e mármores do embasamento. Portanto, o depósito Cerro dos Martins é interpretado como de origem magmática-hidrotermal, relacionado ao evento magmático alcalinoshoshonítico, pós-colisional da Orogênese Dom Feliciano, com idade entre 595-550 Ma. Novos modelos exploratórios para depósitos de cobre no Escudo do Rio Grande do Sul devem considerar o magmatismo alcalino na gênese dos depósitos.
|
8 |
Gênese e evolução da mineralização de criolita, pirocloro e columbita da subfácies albita granito de núcleo, mina pitinga, Amazonas, BrasilMinuzzi, Orlando Renato Rigon January 2005 (has links)
Na mina Pitinga, o minério primário ocorre associado á fácies albita granito do Granito Madeira . Trata-se de uma jazida de Sn de classe mundial, com Nb, Ta e criolita (co-produtos) e Zr, ETR, Y, Li e U (possíveis subprodutos). O minério de criolita ocorre nas subfacíes albita granito de núcleo (AGN) nas formas disseminada (150Mt, teor de 4,2% de Na3AlF6) e de um depósito criolítico maciço DCM (10Mt, teor de 32% de Na3AlF6). A criolita disseminada pertence a duas gerações, ambas quase isótropas e raramente macladas. A criolita magmática ocorre como inclusões em fenocristais de quartzo ou na matriz como cristais subédricos a arredondados, freqüentemente associados com o zircão precoce com o qual encontra-se em equilíbrio (Fig. 18g). a criolita tardia forma agregados irregulares de granulação média a grossa, com zircão + cassiterita + torita + polilitionita + opacos + riebeckita), forma auréolas em zircão e pirocloro com coroas de reação, ou associa-se com mica e/ou zircão em fissuras. Os cristais de criolita podem apresentar micro fissuras preenchidas por thonsenolita e prosopita. O DCM ocorre em sub-superfície. Assemelha-se a um cogumelo lenticular instalado na zona apical, ao longo do eixo central vertical do AGN. É formado por corpos sub-horizontais (+ veios stockworks) de criolita com extensão de até 300m e espessura dr até 30m, com intercalações do AGN. Os corpos se concentram nas Zonas Criolíticas A (superior) e B (inferior), com 115 e 150 m de espessura, respectivamente. Uma terceira zona (Zona Zero), mais superficial, foi parcialmente erodida. São constituídos por criolita (~85% p. vol.) + quartzo + zircão + k-feldspato + galena + gagarinita + xenotímio. A criolita é maclada e pertence a três gerações: nucleada (precoce), caramelo e branca (tardia). Na parte superior do DCM, ocorrem criolita caramelo e nucleada (subordinada). Nos corpos intermediários, criolita caramelo e nucleada ocorrem em iguais proporções. Na parte inferior, predomina a criolita nucleada, a criolita carameo é mais clara e somente aqui, ocorre a criolita branca. Na base da ZCB ocorrem alguns corpos constituídos aparentemente só por criolita branca, com prossança de até 2,20m. em alguns destes corpos, ocorre a fluorita associada e a encaixante é fortemente alterada. Dois novos minerais (waimirita e atroarita) foram descobertos no presente trabalho. As assinaturas dos ETR e Y relacionam, em termos evolutivos e metalogenéticos, a mineralização criolítica e o albita granito. Este, em relação ás demais fácies do Granito Madeira, tem conteúdos de ETR caracterizados por menor fracionamento dos ETRL, enriquecimento relativo em ETRP e anomalias de európio mais intensas. A fluorita magmática (AGB) te razões ETR/Y e ETRL/ETRP ≥ 1 semelhante ao albita granito, e concentração de Y (~ 1.200 ppm) compatível com as de ocorrências associadas a pegmatitos graníticos. Comparativamente à fluorita, a criolita magmática (AGN) é bem mais enriquecida em ETRP e Y. A criolita disseminada tardia é caracterizada por enriquecimento em ETRL e empobrecimento em Y. formou-se em condições de oxi-redução semelhantes às do ambiente magmático. As três gerações de criolita do DCM tem anomalia negativa e Eu manos intensa do que a criolita disseminada (ambianete de formação mais oxidante); da crilita nucleada para a branca ocorrem menores concentrações de Y e ETR e enriquecimento relativo em ETRL. As inclusões fluidas na criolita e quartzo do DCM e da paragênese hidrotermal disseminada na encaixante são em sua maioria primárias e pseudo-secundárias. Predominam IF aquosas e bifásicas. Também ocorrem monofásicas, trifásicas saturadas ou multifásicas. O grau de preenchimento da fase líquida das IF bifásicas varia entre 0,7 e 0,9. a temperatura de fusão final do gelo (TF) na criolita de Zona Zero varia de -1oC a -3oC, na Zona A varia de -1oC a -20oC, com distribuição bimodal, 0oC a -12oC e inferiores a -16oC. Na zona B, a variação das TF é menos ampla, entre -1oC e -15oC com uma tendência da moda da TF de cada nível decrescer do topo em direção à base. As temperaturas de homogeneização total (TH) variam entre 100oC e 300oC, tem forte tendência vertical na Zona Zeroe refletem nas condições físico-químicas do fluido e não processos posteriores. Dois grupos de salinidade estão presentes, em torno de 5% peso eq. NaCl ( criolita não maclada e recristalização da criolita maclada) e outro acima de 10% peso eq. NaCl (criolita maclada). Nas zonas onde a recristalização destrói a criolita maclada, ocorrem aparentemente apenas as IF do grupo de baixa salinidade. A associação de IF, caracterizada pela ampla variação de salinidade e TH, com ausência de CO2, é característica de eventos pós-magmáticos. As relações entre o DCM e mineralização de Nb e Ta no seu entorno foram investigadas. O U-Pb-pirocloro magmático foi afetado por columbitização caracterizada, num estágio inicial, pela perda de Pb e enriquecimento em U e Nb, formando, sucessivamente, Pb-U-pirocloro e o U-pirocloro. O aumento da vacância do sítio A do pirocloro resultou em uma desestabilização e na formação de columbita, com assinaturas geoquímicas de Sn e U herdadas do pirocloro. No pirocloro, paralelamente ao empobrecimento em Pb, ocorreu o enriquecimento em Ca, F, Ce e Sn e empobrecimento em Fé. Na zona de transiçãoentre as subfácies albita granito de núcleo e de borda, ocorrem inversões nestas evoluções o que é interpretada como fruto da diminuição da atividade de flúor no fluido responsável pela columbitização. As relações espaciais entre a distribuição das variedades de pirocloro, columbita e o DCM mostram que a columbitização foi promovida pelo mesmo fluido responsável pela mineralização de criolita, cujo aporte ascendente ocorreu pela zona central do albita granito. Gradientes geoquímicos ligados à perda de F do fluido explicam as descontinuidades geoquímicas nos minerais estudados, assim como, provavelmente, algumas das diferenças entre as paragêneses das subfácies de núcleo e borda do albita granito. Os resultados fornecem importantes informações para a lavra e beneficiamento do minério de Nb e Ta. Os sistemas isotópicos Sm-Nd e 208Pb-207Pb foram utilizados como tentativa de estabelecer a idade e fontes do sistema albita granito - mineralização. Os resultados do primeiro sistema indicam fortes evidências de remobilização, com relações isotópicas entre Sm e Nd alteradas em algumas amostras, não permitindo definição de idades e de εNd. As idades TDM para rocha total em granitos albitizados indicam valores de 1586 Ma e 1529 Ma para as duas amostras que apresentaram resultados coerentes. Nessas amostras, os valores de εNd são de 2,8 e -0,5 calculados para uma idade U/Pb de 1830 Ma para o granito. Esses valores são compatíveis com sistemas gerados no manto, co participação subordinada de crosta continental. O sistema isotópico 208Pb-207Pb forneceu uma idade de 1686 Ma +110/-170 Ma e indicou o envolvimento de fontes mantélica, crustal profunda e crustal rasa. Dentro do erro, a idade obtida pode ser equivalente àquelas das demais fácies do granito Madeira ou ser correlacionável à da Suíte Intrusiva Abonari. Dados geológicos e geoquímicos demonstram a relação direta entre o albita granito e suas mineralizações e descartam, portanto a hipótese de superposição de diferentes eventos metalogenéticos no albita granito. Assim,se a idade mais jovem vier a ser comprovada, ela implicaria correlacionar o albita granito e a mineralização à Suíte Abonari. A distribuição das mineralizações nos corpos Madeira (F, Nb e Sn) e Água boa (Sn), permitem supor que F e Nb relacionam-se a uma mesma fonte, possivelmente mantélica, enquanto o Sn relacina-se a uma fonte crustal. A gênese da mineralização de criolita iniciou-se no estágio magmático (minério disseminado) a partir de um magma excepcionalmente rico em flúor, prosseguiu no estágio pegmatítico e teve seu ápice no estágio hidrotermal. Neste último, fluidos hidrotermais salinos residuais do albita granito, previamente desprovidos de CO2, ascendentes de suas patês inferiores formaram o DCM. Ao longo do processo, o sistema hidrotermal passou a ter um caráter convectivo, incorporando fluidos meteóricos reaquecidos em profundidade, implicando diluições parciais do fluido mineralizador, até a deposição da criolita branca, a mais tardia. / The cryolite ore is associated to the albite granite core facies of the Madeira granite at Pitinga Sn, Nb, Ta mine. In this peralkaline granite, disseminated cryolite is magmatic and hydrothermal. The magmatic paragenesis is characterized by inversions in the classical Bowen crystallization series due to high F contents in the magma. The cryolite massive deposit (CMD) has a mushroom form and is located at the apical granite zone. It is composed by several sub-horizontal bodies with 300 m diameter and until 30 m thick, distributed in two main cryolitic zones A and B with, respectively, 115 m and 150 m thickness. The paragenesis is cryolite (~85%) + quartz, + zircon, + kfeldspath, + galena, + gargarinite and + xenotime. Strong albitization and a pegmatite aureole presence testifie that the CMD zone was a preferential site for fluids circulation since the granite consolidation. The CMD was related to low temperature residual hydrothermal solutions ascending from deeper parts of the albite granite. These solutions distablelized primary minerals promoting cryolite deposition (CMD and disseminated ore) and pyrochlore columbitization and zircon enrichment at the wall rock. Later white cryolite and fluorite depositions are related to fluid dilution by meteoric water apport. Two new minerals were discovered in present work. Aqueous two-phase fluid inclusions (FI), mainly primary and pseudo-secondary, both in the cryolite, quartz and fluorite of the MCD, as well as in the disseminated hydrothermal quartz and the cryolite of the hosting rocks are the predominant types. There also onephase and saturated three-phase or multiphase inclusions. The liquid phase degree of filling of the two-phase FI varies between 0.7 and 0.9. The last ice melting temperature in the Zone Zero cryolite rangers from -1oC the -3oC, in the zone A it ranges from -1oC the -20oC, with a bimodal distribution, from 0oC the -12oC and below -16oC. In the Zone B, this ice melting distribution is narrower, between -1oC and -15oC with the mode of each level decreasing from the top to the base. The total homogenization temperatures (TH) vary between 100oC and 300oC and have a strong vertical trend in the Zone Zero reflecting changes in the fluid physical-chemical conditions instead of alternative process. There are two salinity groups, one around 5% wt. eq. NaCl related to the not twinned cryolite and another one above 10% wt. eq. NaCl in the twinned cryolite. The low salinity group occurs usually in the zones where the recrystallization seems to destroy the cryolite twin. Disseminated cryolite ore formation initiated in the magmatic phase from a fluorine-rich magma, continued in the pegmatitic phase and had its apex in the hydrothermal phase. During the latter, hydrothermal saline residual fluid from the albite granite, with no CO2, formed the MCD and enriched the previous disseminated ore. During this process, the hydrothermal system become convective, mixing with meteoric fluid heated in depth, provoking partial dilutions of the mineralized fluid. Rare earth elements and Y signatures from cryolite and albite granite are closely related. Albite granite is characterized by low LREE fractioning, HRRE enrichment and great negative Eu anomalies. Magmatic fluorite from border albite granite has RRE/Y and LRRE/HRRE > 1, as the albite granite, and Y (~1200 ppm) similar to granitic pegmatites. Magmatic cryolite is more enriched in RRE and Y. late disseminated cryolite is has higher LRRE and lower Y contents and was formed under same magmatic oxi-reduction conditions. The 3 DCM cryolite generations has lower negative Europium anomalies (more oxidizing environment); from nucleated cryolite to white cryolite, RRE and Y contents are progressively lower, and LRRE is enriched. The magmatic U-Pb-pyroclore was alterated by a fluid rich in fluorine. In an initial stage, Pb was lost and U and Nb were enriched resulting in Pb-U and Upyroclores. This process promote an increasing in site A vacancy and the pyroclore structure colappse and result in columbite formation. This mineral maintain the Sn and U geochemical signatures, that are inherited from pyroclore. The Pb impoverishment was followed by Ca, F, Ce and Sn relative enrichment and Fe impoverishment. These behavior change at the transition zone between the nucleus and border albite granite subfacies. It was interpreted as product of reduction on the fluorine activity, that promote the columbitization. Spatial relationships among piroclore varieties and columbite distribution and Cryolite Massive Deposit permited verify that the columbitization process was promoted by the cryolite mineralizing fluid. Gradients linked to F on this fluid probably explains the geochemical discontinuities in the studied minerals, as well as some differences among the nucleus and border albite granite subfacies. Some implications on Nb/Ta mining and recovering are also discussed. Sm-Nd and 208Pb-207Pb sistematic were applied for dating and surce identification for the albite granite and mineralization. Firs system indicates strong RRE remobilization. TDM ages for albitized granites are 1586 My and 1529 My for two samples with coherent results. These samples have εNd 2,8 and -0,5, calculated for 1830 Ma (U/Pb age). The values indicated mantle systems with minour continental crust participation. The 208Pb-207Pb indicate 1868 My + 110/-170 My and source contributions for mantle, deep crust and shallow crust. The age could be related to older granite Madeira facies as to Abonari Intrusive Suite Granite Madeira or be related a Intrusive Suite Abonari. Second possibility needs furthermore works to be confirmed. F and Nb are related to a mantle source. Sn is related to a crustal source.
|
9 |
Metalogênese do depósito de Cu Cerro dos Martins, RS.Toniolo, João Angelo January 2004 (has links)
Este trabalho revisa a geologia e apresenta dados inéditos do Depósito de Cobre Cerro dos Martins (DCM), incluindo geocronologia Pb-Pb em zircão, inclusões fluidas, isótopos estáveis (C, O e S), composição isotópica do Sr e geoquímica de elementos maiores e traços das rochas vulcânicas encaixantes. O depósito está hospedado na seqüência vulcano-sedimentar do Grupo Bom Jardim, da Bacia do Camaquã, do Neoproterozóico do Escudo Sul Rio-grandense, e possui reservas calculadas de 1.450.000 t, com teor médio de 0,83% Cu. O depósito consiste de um conjunto de veios sulfetados que preenchem fraturas de direção N40º-60ºW em rochas andesíticas e sedimentares clásticas, com disseminações confinadas em níveis de siltito, arenito, andesito e conglomerado, da Formação Hilário do Grupo Bom Jardim. Os minerais do minério filoneano são a calcosina e bornita com calcopirita, pirita, galena e esfalerita subordinadas. Digenita, covelita, malaquita cuprita e azurita ocorrem como minério secundário em ganga constituída de carbonatos, quartzo, minerais argilosos, barita e rara hematita. A composição química das vulcânicas (elementos maiores e traços, incluindo ETR) indicam uma afinidade alcalina para o vulcanismo relacionado à Formação Hilário na região do Cerro dos Martins. Um corpo de quartzo-diorito, intrusivo nas rochas vulcânicas e sedimentares, mostrou idade de 550 ±5 Ma (Pb-Pb em zircões) indicando um valor mínimo para a geração do minério do DCM. Esta idade confirma a posição estratigráfica desta rocha na Formação Acampamento Velho e também fornece uma idade mínima para a deposição da seqüência vulcano-sedimentar encaixante do DCM. Os sulfetos do DCM mostram δS34 CDT com valores relativamente homogêneos entre - 6.2 e + 0.9‰ (n= 7). O valor de δS34 CDT da calcopirita, levemente positivo (+0.9‰), indica uma origem magmática para o S, mas os valores negativos encontrados nestes sulfetos, poderiam indicar o envolvimento de outras fontes com enxofre reduzido. Entretanto, a presença de hematita nas paragêneses minerais indica que o minério foi formado sob condições oxidantes, modificando a composição isotópica original do enxofre magmático (δS34 CDT ~ 0‰) para valores negativos. As baritas analisadas apresentam valores com δS34 CDT entre +9.25 e +10.65‰ (n=4) indicando deposição em condições oxidantes, originadas pela mistura de um fluido magmático-hidrotermal com água meteórica. A composição isotópica do C das calcitas do DCM varia com δC13 PDB entre - 1,90 a -4,45‰, interpretada como resultante da mistura entre carbono de fonte magmática com mármores do embasamento. Inclusões fluidas em quartzo do minério indicam temperaturas de deposição entre 157 e 273 °C com mediana de 215 °C (n = 45). A composição isotópica do oxigênio da água em equilibrio com a calcita do fluido hidrotermal (T= 215 °C) mostra valores de δ O18 SMOW entre 3 e 14, indicando H2O de origem magmática, com contribuição de água meteórica. A razão Sr87/Sr86 das mesmas calcitas mostram valores entre 0,7068 – 0,7087, de crosta superior. Rochas plutônicas e vulcânicas do escudo com idades próximas de 550 Ma possuem razões iniciais Sr87/Sr86 entre 0,704 – 0,710, compatíveis com aquelas encontradas nas calcitas da mineralização. Os fluidos hidrotermais do magmatismo shoshonítico-alcalino com idade de 595 Ma e Sr87/Sr86 entre 0,7041 a 0,7053, também são candidatos a fonte do Sr dos carbonatos hidrotermais, mas necessitariam de um componente mais radiogênico. Assim, a fonte de C-O e Sr das calcitas do minério pode ter sido originada diretamente de um fluido magmático-hidrotermal ou de uma mistura entre este fluido e mármores do embasamento. Portanto, o depósito Cerro dos Martins é interpretado como de origem magmática-hidrotermal, relacionado ao evento magmático alcalinoshoshonítico, pós-colisional da Orogênese Dom Feliciano, com idade entre 595-550 Ma. Novos modelos exploratórios para depósitos de cobre no Escudo do Rio Grande do Sul devem considerar o magmatismo alcalino na gênese dos depósitos.
|
10 |
Petrografia e geoquimica dos metassedimentos turbiditicos dos grupos Nova Lima e Sabara no quadrilatero ferrifero, Minas GeraisGuitarrari, Marcelo Marmo 17 December 1999 (has links)
Orientador: Alfonso Scharank / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociencias / Made available in DSpace on 2018-07-28T13:50:45Z (GMT). No. of bitstreams: 1
Guitarrari_MarceloMarmo_M.pdf: 5446034 bytes, checksum: e425ac3c07bf11762a5e9bff1dbb4b81 (MD5)
Previous issue date: 1999 / Resumo: Os metassedimentos elásticos do Grupo Nova Lima (Neo-Arqueano) e Sabará (paleoproterozóico) foram estudados em diversas localidades do Quadrilátero Ferrífero, Minas Gerais, Brasil. Estes estudos tiveram um enfoque comparativo baseado essencialmente em dados petrográficos e geoquímicos, visando o entendimento da evolução crustal operante no limite Arqueano-Proterozóico, e envolveram também considerações sobre a proveniência, o arcabouço tectônico deposicional e os processos geoquímicos e dinâmicos capazes de influenciar a composição química destes sedimentos. Além disso foi possível estabelecer parâmetros para a distinção de turbiditos que hospedam ou não mineralizações auríferas. Os metassedimentos estudados consistiram das couplets turbidíticas, referentes aos níveis Ta-Te de Bouma, equivalentes às Fácies Metagrauvaca-Metapelito respectivamente. De acordo com as metagrauvacas, os turbiditos do Grupo Nova Lima podem ser subdivididos nos tipos I e 11. Os turbiditos do Tipo I ou do tipo Caeté, são mais antigos, fornecendo uma idade mínima de 2.857:t1 M.a., correspondendo às seções da porção leste do Greenstone Belt Rio das Velhas, como Caeté e São Bartolomeu e incluindo eventuais lascas tectônicas do lado oeste, como Rio Acima. Os turbiditos do Tipo 11, também designados de tipo Morro Velho, são mais jovens, com uma idade mínima de 2.701:f:4 M.a e limitam-se à região centro-oeste e noroeste deste greenstone, abrangendo as exposições da Mina de Morro Velho, Sabará e Macacos. As áreas-fonte destes metassedimentos são de natureza bimodal máfica-félsica para os turbiditos do Tipo I e em sua maioria máfica para os do Tipo 11. Com relação ao Grupo Sabará, seus metassedimentos são de origem félsica e as metagrauvacas mostram um comportamento geoquímico similar aquelas do Tipo I. Nestas metagrauvacas nota-se uma maior concentração em SiÜ2, Na20, CaO, Ba, Sr, Nb, à e nas razões de SiO~gO, à/Cr; além de P20S e Th/Sc somente para o Tipo I e MnO e à para o Grupo Sabará, o que se reflete em um maior conteúdo de plagioclásio e quartzo. As metagrauvacas do Tipo 11 por outro lado, são mais ricas em Ti02, K20, Fe203, MgO, Cr, Ni, V, Se, Co, Rb, Y, Cu, Zn e nas razões de Ti/à e Th/U, o que se explica por uma maior abundância em antigos minerais de olivina, piroxênios, Cr-espinélios e subordinadamente magnetita e ilmenita. Este tipo de turbiditos hospeda o principal depósito de ouro do Quadrilátero Ferrífero (Mina de Morro Velho). Os metapelitos arqueanos (Grupo Nova Lima) são aproximadamente similares entre si, não proporcionando uma clara discriminação como nas metagrauvacas, diferente do que ocorre na maioria de outros núcleos arqueanos, onde a discriminação é efetuada pelas rochas pelíticas. Comparativamente aos metapelitos pós-arqueanos (Grupo Sabará), eles são mais ricos em Ti02, F~03, MgO, CaO, K20, Cr, Ni, V, Cu, Zn e mais pobre em Si02, Na20, MnO, à, Nb, Y / Abstract: The elastie metassediments ofNova Lima (Late Archean) and Sabará (paleoproterozoie) were studied in several places around Quadrilátero Ferrífero, Minas Gerais, Brazil. These studies had a" comparative foeus through petrographie and geochemistry data, in order to understand the crusta1 evolution operating in the Archean-Proterozoie boundary, and also involving eonsiderations about the provenance, the depositional tectonie ftamework and the geochemica1 and dynamie processes capable of ebanging the ehemica1 composition of these sediments. Moreover, it was possible to establish parameters to distinguish turbidite-hosted gold sequences and barren turbidites. The metassediments studies inc1uded the turbidite eouplets, eoncerning the Ta-Te levels of Bouma, equivalent ofMetagraywaeke-Metapelitie Facies respectively. According to the metagraywaekes, the turbidites ofthe Nova Lima Group eould be divided into types I and 11. The turbidites ofType I, or Caeté type, are older, with a minimum age of 2.857:tl M.a, equivalent to sections of the eastem portion of the Rio das Velhas Greenstone, as Caeté and São Bartolomeu and ineluding some eventual tectonie wedges ofthe westem portion, sueh as Rio Acima. The turbidites ofType 11, also ca1led MOITO Velho type, are younger, yielding a minimum age of 2.701:t4 M.a and restricted to the mid-westem and north-westem regions of the greenstone belt, including the exposures ofMolTO Velho Mine, Sabará and Macacos. The source areas ofthese sediments are ofthe mafic-felsie bimodal nature to the turbidites ofType I and mainly mafie of Type ll. As to the Sabará Group, its metasediments are of felsie origin and the metagraywaekes present a similar geochemica1 behavior to those of Type I. These metagraywackes are rieher in Si02, Na20, CaO, Ba, Sr and in the SiO:z/MgO rate, in addition to P20S and Th/Se only for Type I and MnO and 'h: for Sabará Group, whieh is reflected in larger eontents of plagioclase and quartzo On the other band, the metagraywacke ofType 11 show a higher levei concentration ofTiÜ2, K20, F~J, MgO, Cr, Ni, V, Se, Rb, Co, Y, Cu, Zn and on the Ti/'h:, 'h:/Cr and ThIU rates whieh is explained by an increased abundance of old minerais of olivine, piroxenes, Cr-spinel and minor magnetite and ilmenite. This type of turbidites host the major gold deposit ofthe Quadrilátero Ferrífero (the Morro Velho Mine). The arehean metapelites (Grupo Nova Lima) are approximately similar within themselves, not providing a c1ear distinction as in metagraywackes, unlike what happens in the majority of other arehean nuc1eus, where the distinction is effected by pelitie roc1es. In comparision with the post-archean metapelites (Griupo Sabará), they are rieher in TiÜ2, F~OJ, MgO, CaO, K20, Cr, Ni, V, Cu, Zn and poorer in Si02, Na20, MnO, 'h:, Nb, Y / Mestrado / Metalogenese / Mestre em Geociências
|
Page generated in 0.0505 seconds