Spelling suggestions: "subject:"telemetering infrastructure""
1 |
Preserving Consumer Privacy on IEEE 802.11s-Based Smart Grid AMI NetworksBeussink, Andrew 01 May 2014 (has links)
While the newly envisioned smart grid will result in a more efficient and reliable power grid, its use of fine-grained meter data has widely raised concerns of consumer privacy. This thesis implements a data obfuscation approach to preserve consumer privacy and assesses its feasibility on a large-scale advanced metering infrastructure (AMI) network built upon the new IEEE 802.11s wireless mesh standard. This obfuscation approach preserves consumer privacy from eavesdroppers and the utility companies while preserving the utility companies' ability to use the fine-grained meter data for state estimation. The impact of this privacy approach is assessed based on its impact on data throughput and delay performance. Simulation results have shown that the approach is feasible to be used even when the network size grows. Additional adaptations to the approach are analyzed for their feasibility in further research.
|
2 |
Evaluation of In-Service Residential Water Meters: Analysis of Registration Error and Metering Infrastructure UpgradesMantilla Pena, Carlos Fernando 22 January 2020 (has links)
The American Water Works Association (AWWA) and the International Water Association (IWA) have designated the volume of water not registered by water meters as a form of "apparent loss" in a distribution system. The term apparent is given because this volume is not technically a water loss, as is the case of wasted water from real leaks in the distribution system. Large volumes of apparent losses hurt the revenue of utilities that rely on water metering to bill their customers. This is critical to utilities given that billed consumption is often the main source of income to provide adequate service. This form of apparent losses is a challenge to water management, particularly, in the case of significant drought because of the uncertainty about the real volume of water consumed. Although the impact of apparent losses from a single residential service connection is not as significant compared to an industrial meter with low accuracy, the cumulative effect of apparent losses across residential users can be very significant.
Until the early 2000's water utilities in the U.S. relied on mechanical water meters to measure residential water use. Since then, electronic meters with higher accuracy at low flow rates have been developed. Data collection from meters has also evolved as well, from the manual reading by an operator, to drive-by systems and most recently to remote readings using a network of transmitters/receivers (i.e., advanced metering infrastructure or AMI).
An expectation of this dissertation is that it will help water utilities to have a better idea of the volume of apparent losses due to metering inaccuracy (i.e., registration error) and provide insights into the effects of installing AMI systems to residential metered water (MW). To achieve this goal, two main objectives are fulfilled 1) to expand on the knowledge of registration error (RE) in mechanical nutating-disc (ND) meters used to monitor residential consumption, and 2) to evaluate the impact of metering infrastructure upgrades on the volume of metered water (MW) from residential service connections. This dissertation follows the manuscript format with three journal articles constituting the main chapters after a general introduction characterizing the issues in Chapter 1.
Chapter 2 is an experimental study that evaluates the influence of service time (ST) and volumetric throughput (TP) on the accuracy of ND meters within the recommended flow rates set by the U.S. water industry for meters with an internal diameter of ⅝-in. (15-mm). Over 300 meters removed from service were tested for accuracy. Key findings of this study are 1) ND meters that have been in service over 25 years have a greater likelihood of poor accuracy at the minimum recommended flow rate (Q^min) of 0.25 gallons per minute (gpm) (57 liters per hour (L/h)) and 0.5 gpm (114 L/h) independent of TP, and 2) comparison with data from accelerated laboratory testing showed that simulated use may not necessarily reflect the actual performance of ND meters in service, particularly, at 0.25 and 0.5 gpm.
Chapter 3 is an experimental study that investigates REs of ND meters below the minimum recommended flow rate (Q^min = 0.25 gpm), particularly, at ½, ¼ and ⅛ of Q^min. Over 100 meters removed from service were tested in this study. Key findings of this study are 1) confirmed how performance decreases with reducing flow rate below Q^min, 2) of the variables considered, TP was found to be a better indicator of RE at Q_(1/8)^min up to an approximate meter reading of 0.66 MG (2.5 ML) compared to ST for 10 ≤ ST ≤ 24 years, with minimal influence at Q_(1/4)^min and none at Q_(1/2)^min, and 3) a strong linear relationship was found between RE at Q_(1/2)^min and RE at Q^min independent of TP or ST.
Chapter 4 is a study that evaluates the extent to which the implementation of a new AMI system combined with a system-wide installation of new ND meters impacted the volume of MW from residential service connections of a 22,000-person municipality in southwest Virginia. Time-series analysis techniques were employed to evaluate changes in the trend of bimonthly MW and median daily MW over a six-year period. Key findings of this study are 1) the AMI system improved the accountability of MW for the utility, 2) despite an ongoing downward annual trend in MW, average bimonthly MW mildly increased after the AMI system was fully operational, and 3) annual MW increased by 2.2% in the 12-month period immediately following the metering infrastructure upgrade. / Doctor of Philosophy / An expectation of this dissertation is that it will help water utilities to have a better idea of the volume of water not being measured by residential water meters in their system (i.e., registration error) and provide insights into the effects of replacing water meters and installing automatic data collections systems (i.e., metering infrastructure upgrades) to improve accounting of water and revenue. To achieve these goals three studies were conducted. In the first two studies, over 400 nutating-disc (ND) water meters, a type of mechanical meter used to measure water, were removed from service and tested to evaluate the percent of water not measured at different ranges of flow (volume per time), and to determine if metering errors changed depending on the service time (ST) of the meter or total volume of water that had gone through (TP) it while in service. The third study consisted in the review of water consumption data from a municipality in southwest Virginia that underwent a metering infrastructure upgrade consisting of replacing all their water meters and installing an advanced metering infrastructure (AMI) system (i.e., automatic meter reading).
Key findings discussed in this dissertation are 1) confirmed how performance of ND meters decreases with reducing flow rate below 0.25 gallons per minute (gpm). This is the minimum flow rate (Q^min) recommended by the U.S. water industry for accuracy testing of mechanical meters. 2) ND meters that have been in service over 25 years have a greater likelihood of poor accuracy at Q^min and 0.5 gpm independent of TP. 3) The relative influence of TP and ST on accuracy varied with the test flow rate. 4) Comparison with data from accelerated laboratory testing showed that simulated use may not necessarily reflect the actual performance of ND meters in service, particularly, at 0.25 and 0.5 gpm. 5) The AMI system improved the accountability of water for the utility. 6) Despite an ongoing downward annual trend in metered water (MW), average bimonthly MW mildly increased after the AMI system was fully operational. And 7) annual MW increased by 2.2% in the 12-month period immediately following the metering infrastructure upgrade.
|
3 |
Privacy-Preserving Protocols for IEEE 802.11s-based Smart Grid Advanced Metering Infrastructure NetworksTonyali, Samet 01 January 2018 (has links)
The ongoing Smart Grid (SG) initiative proposes several modifications to the existing power grid in order to better manage power demands, reduce CO2 emissions and ensure reliability through several new applications. One part of the SG initiative that is currently being implemented is the Advanced Metering Infrastructure (AMI) which provides two-way communication between the utility company and the consumers' smart meters (SMs).
The AMI can be built by using a wireless mesh network which enables multi-hop communication of SMs. The AMI network enables collection of fine-grained power consumption data at frequent intervals. Such a fine-grained level poses several privacy concerns for the consumers. Eavesdroppers can capture data packets and analyze them by means of load monitoring techniques to make inferences about household activities. To prevent this, in this dissertation, we proposed several privacy-preserving protocols for the IEEE 802.11s-based AMI network, which are based on data obfuscation, fully homomorphic encryption and secure multiparty computation. Simulation results have shown that the performance of the protocols degrades as the network grows. To overcome this problem, we presented a scalable simulation framework for the evaluation of IEEE 802.11s-based AMI applications. We proposed several modifications and parameter adjustments for the network protocols being used. In addition, we integrated the Constrained Application Protocol (CoAP) into the protocol stack and proposed five novel retransmission timeout calculation functions for the CoAP in order to increase its reliability.
Upon work showing that there are inconsistencies between the simulator and a testbed, we built an IEEE 802.11s- and ZigBee-based AMI testbed and measured the performance of the proposed protocols under various conditions. The testbed is accessible to the educator and researchers for the experimentation.
Finally, we addressed the problem of updating SMs remotely to keep the AMI network up-to-date. To this end, we developed two secure and reliable multicast-over-broadcast protocols by making use of ciphertext-policy attribute based signcryption and random linear network coding.
|
4 |
Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering InfrastructureKhalifa, Tarek 21 May 2013 (has links)
Utility companies (electricity, gas, and water suppliers), governments, and
researchers recognize an urgent need to deploy communication-based systems to
automate data collection from smart meters and sensors, known as Smart Metering
Infrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering system
is envisaged to bring tremendous benefits to customers, utilities, and
governments. The advantages include reducing peak demand for energy, supporting
the time-of-use concept for billing, enabling customers to make informed
decisions, and performing effective load management, to name a few.
A key element in an SMI is communications between meters and utility servers.
However, the mass deployment of metering devices in the grid calls for studying
the scalability of communication protocols. SMI is characterized by the
deployment of a large number of small Internet Protocol (IP) devices sending
small packets at a low rate to a central server. Although the individual
devices generate data at a low rate, the collective traffic produced is
significant and is disruptive to network communication functionality. This
research work focuses on the scalability of the transport layer
functionalities. The TCP congestion control mechanism, in particular, would be
ineffective for the traffic of smart meters because a large volume of data
comes from a large number of individual sources. This situation makes the TCP
congestion control mechanism unable to lower the transmission rate even when
congestion occurs. The consequences are a high loss rate for metered data and
degraded throughput for competing traffic in the smart metering network.
To enhance the performance of TCP in a smart metering infrastructure (SMI), we
introduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP).
This scheme is based on the idea of upgrading intermediate devices in SMI
(known in the industry as regional collectors) to offer the service of
aggregating the TCP connections. An SA-TCP aggregator collects data packets
from the smart meters of its region over separate TCP connections; then it
reliably forwards the data over another TCP connection to the utility server.
The proposed split and aggregated scheme provides a better response to traffic
conditions and, most importantly, makes the TCP congestion control and flow
control mechanisms effective. Supported by extensive ns-2 simulations, we show
the effectiveness of the SA-TCP approach to mitigating the problems in terms of
the throughput and packet loss rate performance metrics.
A full mathematical model of SA-TCP is provided. The model is highly accurate
and flexible in predicting the behaviour of the two stages, separately and
combined, of the SA-TCP scheme in terms of throughput, packet loss rate and
end-to-end delay. Considering the two stages of the scheme, the modelling
approach uses Markovian models to represent smart meters in the first stage and
SA-TCP aggregators in the second. Then, the approach studies the interaction of
smart meters and SA-TCP aggregators with the network by means of standard
queuing models. The ns-2 simulations validate the math model results.
A comprehensive performance analysis of the SA-TCP scheme is performed. It
studies the impact of varying various parameters on the scheme, including the
impact of network link capacity, buffering capacity of those RCs that act as
SA-TCP aggregators, propagation delay between the meters and the utility
server, and finally, the number of SA-TCP aggregators. The performance results
show that adjusting those parameters makes it possible to further enhance
congestion control in SMI. Therefore, this thesis also formulates an
optimization model to achieve better TCP performance and ensures satisfactory
performance results, such as a minimal loss rate and acceptable end-to-end
delay. The optimization model also considers minimizing the SA-TCP scheme
deployment cost by balancing the number of SA-TCP aggregators and the link
bandwidth, while still satisfying performance requirements.
|
5 |
Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering InfrastructureKhalifa, Tarek 21 May 2013 (has links)
Utility companies (electricity, gas, and water suppliers), governments, and
researchers recognize an urgent need to deploy communication-based systems to
automate data collection from smart meters and sensors, known as Smart Metering
Infrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering system
is envisaged to bring tremendous benefits to customers, utilities, and
governments. The advantages include reducing peak demand for energy, supporting
the time-of-use concept for billing, enabling customers to make informed
decisions, and performing effective load management, to name a few.
A key element in an SMI is communications between meters and utility servers.
However, the mass deployment of metering devices in the grid calls for studying
the scalability of communication protocols. SMI is characterized by the
deployment of a large number of small Internet Protocol (IP) devices sending
small packets at a low rate to a central server. Although the individual
devices generate data at a low rate, the collective traffic produced is
significant and is disruptive to network communication functionality. This
research work focuses on the scalability of the transport layer
functionalities. The TCP congestion control mechanism, in particular, would be
ineffective for the traffic of smart meters because a large volume of data
comes from a large number of individual sources. This situation makes the TCP
congestion control mechanism unable to lower the transmission rate even when
congestion occurs. The consequences are a high loss rate for metered data and
degraded throughput for competing traffic in the smart metering network.
To enhance the performance of TCP in a smart metering infrastructure (SMI), we
introduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP).
This scheme is based on the idea of upgrading intermediate devices in SMI
(known in the industry as regional collectors) to offer the service of
aggregating the TCP connections. An SA-TCP aggregator collects data packets
from the smart meters of its region over separate TCP connections; then it
reliably forwards the data over another TCP connection to the utility server.
The proposed split and aggregated scheme provides a better response to traffic
conditions and, most importantly, makes the TCP congestion control and flow
control mechanisms effective. Supported by extensive ns-2 simulations, we show
the effectiveness of the SA-TCP approach to mitigating the problems in terms of
the throughput and packet loss rate performance metrics.
A full mathematical model of SA-TCP is provided. The model is highly accurate
and flexible in predicting the behaviour of the two stages, separately and
combined, of the SA-TCP scheme in terms of throughput, packet loss rate and
end-to-end delay. Considering the two stages of the scheme, the modelling
approach uses Markovian models to represent smart meters in the first stage and
SA-TCP aggregators in the second. Then, the approach studies the interaction of
smart meters and SA-TCP aggregators with the network by means of standard
queuing models. The ns-2 simulations validate the math model results.
A comprehensive performance analysis of the SA-TCP scheme is performed. It
studies the impact of varying various parameters on the scheme, including the
impact of network link capacity, buffering capacity of those RCs that act as
SA-TCP aggregators, propagation delay between the meters and the utility
server, and finally, the number of SA-TCP aggregators. The performance results
show that adjusting those parameters makes it possible to further enhance
congestion control in SMI. Therefore, this thesis also formulates an
optimization model to achieve better TCP performance and ensures satisfactory
performance results, such as a minimal loss rate and acceptable end-to-end
delay. The optimization model also considers minimizing the SA-TCP scheme
deployment cost by balancing the number of SA-TCP aggregators and the link
bandwidth, while still satisfying performance requirements.
|
6 |
Uma proposta de arquitetura extensível para micro medição em Smart AppliancesTorri, Lucas Bortolaso January 2012 (has links)
O sistema de energia atual passou por poucas alterações desde sua concepção original, há mais de 100 anos. No entanto, a crescente complexidade da infraestrutura e da demanda global por energia vem criando diversos desafios que a sua constituição original não previa, culminando em problemas como apagões e outras falhas no seu fornecimento. Além disso, nota-se nos últimos anos, principalmente nos países desenvolvidos, uma certa diversificação na matriz energética, incentivando a utilização de fontes de energia renováveis e distribuídas. Isto se deve não apenas ao potencial energético das, mas também visando uma menor utilização de combustíveis fósseis, devido tanto a volatilidade e tendência de alta dos preços do petróleo, mas também pela necessidade de contenção do volume de emissões de gases causadores do efeito estufa. Apesar desta defasagem do sistema de energia contemporâneo, avanços nas áreas de informática, eletrônica embarcada, além das tecnologias empregadas na construção de sensores e atuadores, têm possibilitado a criação de uma rede de energia moderna, automatizada e distribuída. Esta rede, conhecida como Mart Grid, traz novas perspectivas no gerenciamento e na operação dos sistemas de geração, transmissão e distribuição de energia elétrica, inserindo propostas que visam melhorar diversos fatores da rede de energia atual, aumentado sua eficiência, segurança e confiabilidade de transmissão, além da eliminação de obstáculos para a integração em larga escala de fontes de energia distribuídas e renováveis. Este novo paradigma é caracterizado por um fluxo bidirecional de eletricidade e de informações, afim de criar uma rede automatizada e distribuída de energia. Ele incorpora à grade os benefícios da computação distribuída e de comunicações para fornecer informações em tempo real e permitir o equilíbrio quase instantâneo da oferta e da procura dos bens energéticos. Dentro do contexto de Smart Grids, Smart Appliances são uma modernização dos aparelhos eletrodomésticos quanto a sua utilização de energia, de forma que estes sejam capazes de monitorar, proteger e ajustar automaticamente o seu funcionamento às necessidades do proprietário e a disponibilidade deste recurso. Ou seja, estes possuem não apenas características de inteligência, mas também a capacidade de utilizarem as informações disponibilizados no Smart Grid para adaptar seu funcionamento. Apesar do grande interesse despertado em torno destes conceitos, há ainda uma enorme carência de padrões e tecnologias que permitam a criação de tais aparelhos inteligentes inseridos nos ambientes domésticos e prediais. Este trabalho tem por objetivo estudar e conceituar o Smart Grid, pesquisando os grupos existentes que buscam uma padronização deste, bem como conceituar Smart Appliances, avaliando projetos e pesquisas existentes, e, principalmente, propondo uma arquitetura que permita a construção de tais dispositivos. Os requisitos necessários para a criação desta arquitetura são discutidos ao longo da dissertação, bem como as tecnologias necessárias e existentes para permitir sua proposta. Finalmente, o funcionamento bem sucedido, através de uma implementação da mesma, é demonstrado através de diferentes experimentos, avaliando como as características do Smart Grid podem ser utilizadas para criar aparelhos eletrodomésticos capazes de usarem as informações disponíveis para melhorar seu funcionamento. / Since its original conception, for over 100 years, the current energy system has experienced little changes. However, the increasing complexity of the infrastructure, together with the growing global demand for energy, have imposed many challenges that its original constitution did not foresee, which has resulted in problems such as blackouts along with other energy supply failures. Moreover, over the last few years, some diversification in energy generation has been seen, especially in developed countries, encouraging the use of distributed and renewable energy sources. Apart from the energetic potential offered by those sources, it aims to decrease the greenhouse gases emission volume, in addition to reduce dependency on fossil fuels, which tend to increase in price. Despite the lack of upgrades, improvements in the areas of computing, embedded electronics, and technologies employed in sensors and actuators assembly have enabled the creation of a modern automated and distributed power grid. This grid, better known as Smart Grid, enhances several factors of the current power network, bringing new perspectives in electricity management, operation, generation, transmission and distribution. That result in increased efficiency, transmission safety and reliability, additionally eliminating obstacles in large-scale integration of renewable and distributed energy sources. This new paradigm also features a bi-directional electricity and information flow, enabling an automated and distributed energy network that incorporates the grid benefits of distributed computing and communications to provide real-time information and allowing almost instantaneous supply and demand balance of energy goods. Within the context of Smart Grids, Smart Appliances proposes an extension of regular appliances with intelligence and self-awareness of their energy use, so that they are able to monitor, protect and automatically adjust its operation according to the owner's needs and availability of this resource. That is, besides of being smart, they feature ability to use the information available on the Smart Grid to adapt its running behavior. Even though the increased interest around these concepts, there is still a gap of standards and technologies enabling the creation and embedding of intelligent devices in residences and buildings. The present projects attempts to study and conceptualize Smart Grid, surveying existing standardization groups, as well as conceptualize Smart Appliances, evaluating existing projects and research, proposing an architecture allowing the building of such devices. The requirements for this architecture, together with the required and existing technologies to make the implementation feasible, are discussed throughout the project development. Finally, the architecture's successful functioning is demonstrated through an implementation of it, together with different experiments, relying on them to evaluate the Smart Grid characteristics and how appliances can improve their operation based on the information shared throughout the Smart Grid.
|
7 |
Uma proposta de arquitetura extensível para micro medição em Smart AppliancesTorri, Lucas Bortolaso January 2012 (has links)
O sistema de energia atual passou por poucas alterações desde sua concepção original, há mais de 100 anos. No entanto, a crescente complexidade da infraestrutura e da demanda global por energia vem criando diversos desafios que a sua constituição original não previa, culminando em problemas como apagões e outras falhas no seu fornecimento. Além disso, nota-se nos últimos anos, principalmente nos países desenvolvidos, uma certa diversificação na matriz energética, incentivando a utilização de fontes de energia renováveis e distribuídas. Isto se deve não apenas ao potencial energético das, mas também visando uma menor utilização de combustíveis fósseis, devido tanto a volatilidade e tendência de alta dos preços do petróleo, mas também pela necessidade de contenção do volume de emissões de gases causadores do efeito estufa. Apesar desta defasagem do sistema de energia contemporâneo, avanços nas áreas de informática, eletrônica embarcada, além das tecnologias empregadas na construção de sensores e atuadores, têm possibilitado a criação de uma rede de energia moderna, automatizada e distribuída. Esta rede, conhecida como Mart Grid, traz novas perspectivas no gerenciamento e na operação dos sistemas de geração, transmissão e distribuição de energia elétrica, inserindo propostas que visam melhorar diversos fatores da rede de energia atual, aumentado sua eficiência, segurança e confiabilidade de transmissão, além da eliminação de obstáculos para a integração em larga escala de fontes de energia distribuídas e renováveis. Este novo paradigma é caracterizado por um fluxo bidirecional de eletricidade e de informações, afim de criar uma rede automatizada e distribuída de energia. Ele incorpora à grade os benefícios da computação distribuída e de comunicações para fornecer informações em tempo real e permitir o equilíbrio quase instantâneo da oferta e da procura dos bens energéticos. Dentro do contexto de Smart Grids, Smart Appliances são uma modernização dos aparelhos eletrodomésticos quanto a sua utilização de energia, de forma que estes sejam capazes de monitorar, proteger e ajustar automaticamente o seu funcionamento às necessidades do proprietário e a disponibilidade deste recurso. Ou seja, estes possuem não apenas características de inteligência, mas também a capacidade de utilizarem as informações disponibilizados no Smart Grid para adaptar seu funcionamento. Apesar do grande interesse despertado em torno destes conceitos, há ainda uma enorme carência de padrões e tecnologias que permitam a criação de tais aparelhos inteligentes inseridos nos ambientes domésticos e prediais. Este trabalho tem por objetivo estudar e conceituar o Smart Grid, pesquisando os grupos existentes que buscam uma padronização deste, bem como conceituar Smart Appliances, avaliando projetos e pesquisas existentes, e, principalmente, propondo uma arquitetura que permita a construção de tais dispositivos. Os requisitos necessários para a criação desta arquitetura são discutidos ao longo da dissertação, bem como as tecnologias necessárias e existentes para permitir sua proposta. Finalmente, o funcionamento bem sucedido, através de uma implementação da mesma, é demonstrado através de diferentes experimentos, avaliando como as características do Smart Grid podem ser utilizadas para criar aparelhos eletrodomésticos capazes de usarem as informações disponíveis para melhorar seu funcionamento. / Since its original conception, for over 100 years, the current energy system has experienced little changes. However, the increasing complexity of the infrastructure, together with the growing global demand for energy, have imposed many challenges that its original constitution did not foresee, which has resulted in problems such as blackouts along with other energy supply failures. Moreover, over the last few years, some diversification in energy generation has been seen, especially in developed countries, encouraging the use of distributed and renewable energy sources. Apart from the energetic potential offered by those sources, it aims to decrease the greenhouse gases emission volume, in addition to reduce dependency on fossil fuels, which tend to increase in price. Despite the lack of upgrades, improvements in the areas of computing, embedded electronics, and technologies employed in sensors and actuators assembly have enabled the creation of a modern automated and distributed power grid. This grid, better known as Smart Grid, enhances several factors of the current power network, bringing new perspectives in electricity management, operation, generation, transmission and distribution. That result in increased efficiency, transmission safety and reliability, additionally eliminating obstacles in large-scale integration of renewable and distributed energy sources. This new paradigm also features a bi-directional electricity and information flow, enabling an automated and distributed energy network that incorporates the grid benefits of distributed computing and communications to provide real-time information and allowing almost instantaneous supply and demand balance of energy goods. Within the context of Smart Grids, Smart Appliances proposes an extension of regular appliances with intelligence and self-awareness of their energy use, so that they are able to monitor, protect and automatically adjust its operation according to the owner's needs and availability of this resource. That is, besides of being smart, they feature ability to use the information available on the Smart Grid to adapt its running behavior. Even though the increased interest around these concepts, there is still a gap of standards and technologies enabling the creation and embedding of intelligent devices in residences and buildings. The present projects attempts to study and conceptualize Smart Grid, surveying existing standardization groups, as well as conceptualize Smart Appliances, evaluating existing projects and research, proposing an architecture allowing the building of such devices. The requirements for this architecture, together with the required and existing technologies to make the implementation feasible, are discussed throughout the project development. Finally, the architecture's successful functioning is demonstrated through an implementation of it, together with different experiments, relying on them to evaluate the Smart Grid characteristics and how appliances can improve their operation based on the information shared throughout the Smart Grid.
|
8 |
Uma proposta de arquitetura extensível para micro medição em Smart AppliancesTorri, Lucas Bortolaso January 2012 (has links)
O sistema de energia atual passou por poucas alterações desde sua concepção original, há mais de 100 anos. No entanto, a crescente complexidade da infraestrutura e da demanda global por energia vem criando diversos desafios que a sua constituição original não previa, culminando em problemas como apagões e outras falhas no seu fornecimento. Além disso, nota-se nos últimos anos, principalmente nos países desenvolvidos, uma certa diversificação na matriz energética, incentivando a utilização de fontes de energia renováveis e distribuídas. Isto se deve não apenas ao potencial energético das, mas também visando uma menor utilização de combustíveis fósseis, devido tanto a volatilidade e tendência de alta dos preços do petróleo, mas também pela necessidade de contenção do volume de emissões de gases causadores do efeito estufa. Apesar desta defasagem do sistema de energia contemporâneo, avanços nas áreas de informática, eletrônica embarcada, além das tecnologias empregadas na construção de sensores e atuadores, têm possibilitado a criação de uma rede de energia moderna, automatizada e distribuída. Esta rede, conhecida como Mart Grid, traz novas perspectivas no gerenciamento e na operação dos sistemas de geração, transmissão e distribuição de energia elétrica, inserindo propostas que visam melhorar diversos fatores da rede de energia atual, aumentado sua eficiência, segurança e confiabilidade de transmissão, além da eliminação de obstáculos para a integração em larga escala de fontes de energia distribuídas e renováveis. Este novo paradigma é caracterizado por um fluxo bidirecional de eletricidade e de informações, afim de criar uma rede automatizada e distribuída de energia. Ele incorpora à grade os benefícios da computação distribuída e de comunicações para fornecer informações em tempo real e permitir o equilíbrio quase instantâneo da oferta e da procura dos bens energéticos. Dentro do contexto de Smart Grids, Smart Appliances são uma modernização dos aparelhos eletrodomésticos quanto a sua utilização de energia, de forma que estes sejam capazes de monitorar, proteger e ajustar automaticamente o seu funcionamento às necessidades do proprietário e a disponibilidade deste recurso. Ou seja, estes possuem não apenas características de inteligência, mas também a capacidade de utilizarem as informações disponibilizados no Smart Grid para adaptar seu funcionamento. Apesar do grande interesse despertado em torno destes conceitos, há ainda uma enorme carência de padrões e tecnologias que permitam a criação de tais aparelhos inteligentes inseridos nos ambientes domésticos e prediais. Este trabalho tem por objetivo estudar e conceituar o Smart Grid, pesquisando os grupos existentes que buscam uma padronização deste, bem como conceituar Smart Appliances, avaliando projetos e pesquisas existentes, e, principalmente, propondo uma arquitetura que permita a construção de tais dispositivos. Os requisitos necessários para a criação desta arquitetura são discutidos ao longo da dissertação, bem como as tecnologias necessárias e existentes para permitir sua proposta. Finalmente, o funcionamento bem sucedido, através de uma implementação da mesma, é demonstrado através de diferentes experimentos, avaliando como as características do Smart Grid podem ser utilizadas para criar aparelhos eletrodomésticos capazes de usarem as informações disponíveis para melhorar seu funcionamento. / Since its original conception, for over 100 years, the current energy system has experienced little changes. However, the increasing complexity of the infrastructure, together with the growing global demand for energy, have imposed many challenges that its original constitution did not foresee, which has resulted in problems such as blackouts along with other energy supply failures. Moreover, over the last few years, some diversification in energy generation has been seen, especially in developed countries, encouraging the use of distributed and renewable energy sources. Apart from the energetic potential offered by those sources, it aims to decrease the greenhouse gases emission volume, in addition to reduce dependency on fossil fuels, which tend to increase in price. Despite the lack of upgrades, improvements in the areas of computing, embedded electronics, and technologies employed in sensors and actuators assembly have enabled the creation of a modern automated and distributed power grid. This grid, better known as Smart Grid, enhances several factors of the current power network, bringing new perspectives in electricity management, operation, generation, transmission and distribution. That result in increased efficiency, transmission safety and reliability, additionally eliminating obstacles in large-scale integration of renewable and distributed energy sources. This new paradigm also features a bi-directional electricity and information flow, enabling an automated and distributed energy network that incorporates the grid benefits of distributed computing and communications to provide real-time information and allowing almost instantaneous supply and demand balance of energy goods. Within the context of Smart Grids, Smart Appliances proposes an extension of regular appliances with intelligence and self-awareness of their energy use, so that they are able to monitor, protect and automatically adjust its operation according to the owner's needs and availability of this resource. That is, besides of being smart, they feature ability to use the information available on the Smart Grid to adapt its running behavior. Even though the increased interest around these concepts, there is still a gap of standards and technologies enabling the creation and embedding of intelligent devices in residences and buildings. The present projects attempts to study and conceptualize Smart Grid, surveying existing standardization groups, as well as conceptualize Smart Appliances, evaluating existing projects and research, proposing an architecture allowing the building of such devices. The requirements for this architecture, together with the required and existing technologies to make the implementation feasible, are discussed throughout the project development. Finally, the architecture's successful functioning is demonstrated through an implementation of it, together with different experiments, relying on them to evaluate the Smart Grid characteristics and how appliances can improve their operation based on the information shared throughout the Smart Grid.
|
9 |
Optimizing the Advanced Metering Infrastructure Architecture in Smart GridChasempour, Alireza 01 May 2016 (has links)
Advanced Metering Infrastructure (AMI) is one of the most important components of smart grid (SG) which aggregates data from smart meters (SMs) and sends the collected data to the utility center (UC) to be analyzed and stored. In traditional centralized AMI architecture, there is one meter data management system to process all gathered information in the UC, therefore, by increasing the number of SMs and their data rates, this architecture is not scalable and able to satisfy SG requirements, e.g., delay and reliability. Since scalability is one of most important characteristics of AMI architecture in SG, we have investigated the scalability of different AMI architectures and proposed a scalable hybrid AMI architecture. We have introduced three performance metrics. Based on these metrics, we formulated each AMI architecture and used a genetic-based algorithm to minimize these metrics for the proposed architecture. We simulated different AMI architectures for five demographic regions and the results proved that our proposed AMI hybrid architecture has a better performance compared with centralized and decentralized AMI architectures and it has a good load and geographic scalability.
|
10 |
Hardware-based Authentication and Security for Advanced Metering InfrastructureDeb Nath, Atul Prasad January 2016 (has links)
No description available.
|
Page generated in 0.4257 seconds