1 |
Desenvolvimento de eletrocatalisadores de PdM (M= Ni, Cu, Ag) para reação de redução de oxigênio em meio básico na ausência e presença de álcool / Development of PdM (M = Ni, Cu, Ag) electrocatalysts for oxygen reduction reaction in alkaline medium in the absence and presence of alcoholIsidoro, Roberta Alvarenga 16 December 2015 (has links)
Eletrocatalisadores baseados em Pd/C, PdCu/C, PdNi/C e PdAg/C foram produzidos pelo método de micro-ondas para serem utilizados como cátodo na célula a combustível alcalina na ausência e presença de álcool. Este método se mostrou bastante efetivo para a produção dos materiais, uma vez que as partículas apresentaram boa dispersão no suporte de carbono e produziram eletrocatalisadores com tamanho de partícula em torno de 3,5 nm, de acordo com as análises de DRX e MET. A partir das voltametrias cíclicas observa-se que para os eletrocatalisadores de PdCu/C e PdNi/C quanto maior a quantidade de Cu ou Ni, respectivamente, maior a área ativa do material estudado. Análises de disco anel rotatório foram realizadas nos eletrocatalisadores demonstrando que, independente da composição estudada, a quantidade produzida de peróxido foi de no máximo 4%. Estes dados corroboram com as inclinação das retas nas análises de Koutecky-Levich, uma vez que em ambos os casos a RRO ocorre via 4 elétrons. Análises de estabilidade dos materiais demonstraram que todos eles mantiveram ou melhoraram seu desempenho diante da RRO, quando se compara os dados obtidos antes e depois de 1000 ciclos voltamétricos. Testes de tolerância ao metanol e etanol foram realizados em meia célula com todas as composições de eletrocatalisadores produzidos. Na presença tanto de metanol quanto de etanol as composições atômica de 50:50, para todos os materiais estudados, foram as que demonstraram menor influência da presença do álcool durante a varredura linear da RRO. Nas medidas realizadas em célula unitária, com relação à tolerância ao metanol durante a RRO, o eletrocatalisador que demonstrou melhor desempenho foi o PdAg/C 70:30 enquanto que na presença de etanol o eletrocatalisador que demonstrou melhor desempenho foi o PdNi/C 70:30. / Pd/C, PdCu/C, PdNi/C and PdAg/C electrocatalysts were produced by microwave method to be used as cathode in alkaline fuel cell in the absence and presence of alcohol. This method showed to be effective for the materials production, the particles exhibited good dispersion in carbon support and it produced electrocatalysts with a particle size of about 3.5 nm, according to XRD and TEM analysis. In cyclic voltammetry is observed that PdCu/C and PdNi/C electrocatalysts has higher active area with higher amount of Cu and Ni, respectively. Rotating ring disk analysis in the electrocatalysts showed that the amount of peroxide produced was at most 4%. This data is similar to Koutecky-Levich analysis, once for both the ORR occurs via 4 electrons. Materials stability analysis showed that they kept or improve performance in ORR, comparing the data before and after 1000 voltammetric cycles. Tolerance tests in methanol and ethanol were performed in a half cell in all electrocatalysts compositions. In presence of methanol and ethanol the compositions 50:50, to all materials studied, showed less influence in the presence of alcohol in ORR linear scan. In alkaline fuel cell PdAg/C 70:30 showed better performance for ORR in presence of methanol and PdNi/C 70:30 showed better performance for ORR in ethanol presence.
|
2 |
Desenvolvimento de eletrocatalisadores de PdM (M= Ni, Cu, Ag) para reação de redução de oxigênio em meio básico na ausência e presença de álcool / Development of PdM (M = Ni, Cu, Ag) electrocatalysts for oxygen reduction reaction in alkaline medium in the absence and presence of alcoholRoberta Alvarenga Isidoro 16 December 2015 (has links)
Eletrocatalisadores baseados em Pd/C, PdCu/C, PdNi/C e PdAg/C foram produzidos pelo método de micro-ondas para serem utilizados como cátodo na célula a combustível alcalina na ausência e presença de álcool. Este método se mostrou bastante efetivo para a produção dos materiais, uma vez que as partículas apresentaram boa dispersão no suporte de carbono e produziram eletrocatalisadores com tamanho de partícula em torno de 3,5 nm, de acordo com as análises de DRX e MET. A partir das voltametrias cíclicas observa-se que para os eletrocatalisadores de PdCu/C e PdNi/C quanto maior a quantidade de Cu ou Ni, respectivamente, maior a área ativa do material estudado. Análises de disco anel rotatório foram realizadas nos eletrocatalisadores demonstrando que, independente da composição estudada, a quantidade produzida de peróxido foi de no máximo 4%. Estes dados corroboram com as inclinação das retas nas análises de Koutecky-Levich, uma vez que em ambos os casos a RRO ocorre via 4 elétrons. Análises de estabilidade dos materiais demonstraram que todos eles mantiveram ou melhoraram seu desempenho diante da RRO, quando se compara os dados obtidos antes e depois de 1000 ciclos voltamétricos. Testes de tolerância ao metanol e etanol foram realizados em meia célula com todas as composições de eletrocatalisadores produzidos. Na presença tanto de metanol quanto de etanol as composições atômica de 50:50, para todos os materiais estudados, foram as que demonstraram menor influência da presença do álcool durante a varredura linear da RRO. Nas medidas realizadas em célula unitária, com relação à tolerância ao metanol durante a RRO, o eletrocatalisador que demonstrou melhor desempenho foi o PdAg/C 70:30 enquanto que na presença de etanol o eletrocatalisador que demonstrou melhor desempenho foi o PdNi/C 70:30. / Pd/C, PdCu/C, PdNi/C and PdAg/C electrocatalysts were produced by microwave method to be used as cathode in alkaline fuel cell in the absence and presence of alcohol. This method showed to be effective for the materials production, the particles exhibited good dispersion in carbon support and it produced electrocatalysts with a particle size of about 3.5 nm, according to XRD and TEM analysis. In cyclic voltammetry is observed that PdCu/C and PdNi/C electrocatalysts has higher active area with higher amount of Cu and Ni, respectively. Rotating ring disk analysis in the electrocatalysts showed that the amount of peroxide produced was at most 4%. This data is similar to Koutecky-Levich analysis, once for both the ORR occurs via 4 electrons. Materials stability analysis showed that they kept or improve performance in ORR, comparing the data before and after 1000 voltammetric cycles. Tolerance tests in methanol and ethanol were performed in a half cell in all electrocatalysts compositions. In presence of methanol and ethanol the compositions 50:50, to all materials studied, showed less influence in the presence of alcohol in ORR linear scan. In alkaline fuel cell PdAg/C 70:30 showed better performance for ORR in presence of methanol and PdNi/C 70:30 showed better performance for ORR in ethanol presence.
|
3 |
Addition of platinum to palladium-cobalt nanoalloy catalyst by direct alloying and galvanic displacementWise, Brent 16 February 2011 (has links)
Direct methanol fuel cells (DMFC) are being investigated as a portable energy conversion device for military and commercial applications. DMFCs offer the potential to efficiently extract electricity from a dense liquid fuel. However, improvements in materials properties and lowering the cost of the electrocatalysts used in a DMFC are necessary for commercialization of the technology. The cathode electrocatalyst is a critical issue in DMFC because the state-of-the-art catalyst, platinum, is very expensive and rare, and its performance is diminished by methanol that crosses over from the anode to the cathode through the Nafion membrane.
This thesis investigates the addition of platinum to a palladium-cobalt nanoalloy electrocatalyst supported on carbon black in order to improve catalyst activity for the oxygen reduction reaction (ORR) and catalyst stability against dissolution in acidic environment without significantly reducing the methanol-tolerance of the catalyst. Platinum was added to the palladium-cobalt nanoalloy catalyst using two synthesis methods. In the first method, platinum was directly alloyed with palladium and cobalt using a polyol reduction method, followed by heat treatment in a reducing atmosphere to form catalysts with 11 and 22 atom % platinum. In the second method, platinum was added to a palladium-cobalt alloy by galvanic displacement reaction to form catalysts with 10 and 22 atom % platinum. The palladium cobalt alloy was synthesized using a polyol method, followed by heat treatment in a reducing atmosphere to alloy the nanoparticles before the Pt displacement. It was found that both methods significantly improve catalyst activity and stability, with the displaced catalysts showing a higher activity than the corresponding alloy catalyst. However the alloy catalysts showed similar resistance to dissolution as the displaced catalysts, and the alloyed catalysts were more tolerant to methanol. The displaced catalyst with 22 atom % platinum (8 wt. % Pt overall) performed similar to a 20 wt. % commercial platinum catalyst in both RDE and single cell DMFC tests. The 10 and 22 atom % Pt displaced catalysts and 22 atom % Pt alloyed all showed higher Pt mass specific activities than a commercial Pt catalyst. / text
|
Page generated in 0.4493 seconds