31 |
Modelování Velké mlhoviny v Orionu / Modelování Velké mlhoviny v OrionuPavlík, Václav January 2014 (has links)
Title: Modelling the Orion Nebula Cluster Author: Václav Pavlík Department: Astronomical Institute of the Charles University Supervisor: doc. RNDr. Ladislav Šubr, Ph.D. (Astronomical Institute of the Charles University) Abstract: Young star clusters are widely discussed from the point of view of their evolution and structure. In this work we focused our attention on studying a typical representative of these objects - the Orion Nebula Cluster (ONC, M 42) - based on the observational data, including their confrontation with N- body models from Šubr et al. (2012). These numerical models were inspired by the recently proposed evolutionary scenario, according to which the star clusters begin their evolution from very dense initial conditions. From the analysis of the X-ray sources we revealed that the ONC is likely to be rotationally symmetric in the inner area (� 0.7 pc). Further analysis including also optical and IR observational data led us to the conclusion that the ONC is elongated from the North-East to the South-West on large scales (up to 2 pc). We also compared radial profiles of different mass groups of stars and we discovered a possibly inverse mass segregation between stars with masses in the interval (1 ; 5) M⊙ and the stars less massive than 0.5 M⊙ in the range from 0.5 pc to 1.5 pc. This...
|
32 |
The optical and NIR luminous energy output of the Universe : the creation and utilisation of a 9 waveband consistent sample of galaxies using UKIDSS and SDSS observations with the GAMA and MGC spectroscopic datasetsHill, David T. January 2011 (has links)
Theories of how galaxies form and evolve depend greatly on constraints provided by observations. However, when those observations come from different datasets, systematic offsets may occur. This causes difficulties measuring variations in parameters between filters. In this thesis I present the variation in total luminosity density with wavelength in the nearby Universe (z<0.1), produced from a consistent reanalysis of NIR and optical observations, taken from the MGC, UKIDSS and SDSS surveys. I derive luminosity distributions, best-fitting Schechter function parameterisations and total luminosity densities in ugrizYJHK, and compare the variation in luminosity density with cosmic star formation history (CSFH) and initial mass function (IMF) models. I examine the r band luminosity distribution produced using different aperture definitions, the joint luminosity- surface brightness (bivariate brightness) distribution in ugrizYJHK, comparing them to previously derived distributions, and how the total luminosity density varies with wavelength when surface brightness incompleteness is accounted for. I find the following results. (1) The total luminosity density calculated using a non-Sersic (e.g. Kron or Petrosian) aperture is underestimated by at least 15%, (2) Changing the detection threshold has a minor effect on the best-fitting Schecter parameters, but the choice of Kron or Petrosian apertures causes an offset between datasets, regardless of the filter used to define the source list, (3) The decision to use circular or elliptical apertures causes an offset in M* of 0.20 mag, and best-fitting Schechter parameters from total magnitude photometric systems have a flatter faint-end slope than Kron or Petrosian photometry, (4) There is no surface brightness distribution evolution with luminosity for luminous galaxies, but at fainter magnitudes the distribution broadens and the peak surface brightness dims. A Choloniewski function that is modified to account for this surface brightness evolution fits the bivariate-brightness distribution better than an unmodified Choloniewski function, (5) The energy density per unit interval, vf(v) derived using MGC and GAMA samples agrees within 90% confidence intervals, but does not agree with predictions using standard CSFH and IMF models. Possible improvements to the data and alterations to the theory are suggested.
|
33 |
A study of the large-scale structure of the wind of WR 134Aldoretta, Emily 10 1900 (has links)
Diverses méthodes ont été utilisées pour étudier les étoiles Wolf-Rayet (WR) dans le but de comprendre les phénomènes physiques variés qui prennent place dans leur vent dense. Pour étudier la variabilité qui n'est pas strictement périodique et ayant des caractéristiques différentes d'une époque à l'autre, il faut observer pendant des périodes de temps suffisamment longues en adopter un échantillonnage temporel élevé pour être en mesure d'identifier les phénomènes physiques sous-jacents. À l'été 2013, des astronomes professionnels et amateurs du monde entier ont contribué à une campagne d'observation de 4 mois, principalement en spectroscopie, mais aussi en photométrie, polarimétrie et en interférométrie, pour observer les 3 premières étoiles Wolf-Rayet découvertes: WR 134 (WN6b), WR 135 (WC8) et WR 137 (WC7pd + O9). Chacune de ces étoiles est intéressante à sa manière, chacune présentant une variété différente de structures dans son vent. Les données spectroscopiques de cette campagne ont été réduites et analysées pour l'étoile présumée simple WR 134 pour mieux comprendre le comportement de sa variabilité périodique à long terme dans le cadre d'une étude des régions d'interactions en corotation (CIRs) qui se retrouvent dans son vent. Les résultats de cette étude sont présentés dans ce mémoire. / Wolf-Rayet stars have been studied using various methods in order to understand the
many physical phenomena taking place in their dense outflows. In the case of variability
that is not strictly periodic or for epoch-dependant changes, the challenge is to observe
for su fficiently long periods of time and with a high enough time sampling to be able
to understand the underlying phenomena. During the summer of 2013, professional and
amateur astronomers from around the world contributed to a 4-month campaign, mainly
in spectroscopy but also in photometry, polarimetry and interferometry, to observe the
fi rst 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137
(WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of
stellar wind structures. The spectroscopic data from this campaign have been reduced
and analyzed for the presumably single star WR 134 in order to better understand its
behavior and long-term periodicity in the context of corotating interaction regions (CIRs)
in the wind. The results of this study are presented in this thesis.
|
Page generated in 0.0772 seconds