• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Levodopa therapy in Parkinson’s disease: Influence on liquid chromatographic tandem mass spectrometricbased measurements of plasma and urinary normetanephrine, metanephrine and methoxytyramine

Eisenhofer, Graeme, Brown, Sebastian, Peitzsch, Mirko, Pelzel, Daniela, Lattke, Peter, Glöckner, Stephan, Stell, Anthony, Prejbisz, Aleksander, Fassnacht, Martin, Beuschlein, Felix, Januszewicz, Andrzej, Siegert, Gabriele, Reichmann, Heinz 19 September 2019 (has links)
Background: Medication-related interferences with measurements of catecholamines and their metabolites represent important causes of false-positive results during diagnosis of phaeochromocytomas and paragangliomas (PPGLs). Such interferences are less troublesome with measurements by liquid chromatography with tandem mass-spectrometry (LC-MS/MS) than by other methods, but can still present problems for some drugs. Levodopa, the precursor for dopamine used in the treatment of Parkinson’s disease, represents one potentially interfering medication. Methods: Plasma and urine samples, obtained from 20 Parkinsonian patients receiving levodopa, were analysed for concentrations of catecholamines and their O-methylated metabolites by LC-MS/MS. Results were compared with those from a group of 120 age-matched subjects and 18 patients with PPGLs. Results: Plasma and urinary free and deconjugated (freeþconjugated) methoxytyramine, as well as urinary dopamine, showed 22- to 148-fold higher (P<0.0001) concentrations in patients receiving levodopa than in the reference group. In contrast, plasma normetanephrine, urinary noradrenaline and urinary free and deconjugated normetanephrine concentrations were unaffected. Plasma free metanephrine, urinary adrenaline and urinary free and deconjugated metanephrine all showed higher (P<0.05) concentrations in Parkinsonian patients than the reference group, but this was only a problem for adrenaline. Similar to normetanephrine, plasma and urinary metanephrine remained below the 97.5 percentiles of the reference group in almost all Parkinsonian patients. Conclusions: These data establish that although levodopa treatment confounds identification of PPGLs that produce dopamine, the therapy is not a problem for use of LC-MS/MS measurements of plasma and urinary normetanephrine and metanephrine to diagnose more commonly encountered PPGLs that produce noradrenaline or adrenaline.
2

A novel method for the measurement of plasma metanephrines using online solid phase extraction-liquid chromatography tandem mass spectrometry

Adaway, Joanne E., Peitzsch, Mirko, Keevil, Brian G. 19 September 2019 (has links)
Background: Measurement of plasma metanephrine, normetanephrine and 3-methoxytyramine is useful in the diagnosis of phaeochromocytomas, but many assays require a large volume of plasma due to poor assay sensitivity, and often require lengthy sample preparation. Our aim was to develop a method for measurement of plasma metanephrines using a small sample volume with minimal hands-on preparation. Methods: Samples were deproteinised using 10 K spin filters prior to online solid phase extraction using a Waters Acquity UPLC Online SPE Manager (Waters, Manchester, UK) coupled to a Waters Xevo TQ-S mass spectrometer (Waters, Manchester, UK). The assay was validated and results compared to a previously published method. Results: We achieved a limit of quantification of 37.5 pmol/L for metanephrine and 3-methoxytyramine and 75 pmol/L for normetanephrine using only 150 mL of sample. The assay was linear up to 30,000 pmol/L for all analytes and in a method comparison study results showed good agreement with a previously published LC-MS/MS assay. Conclusions: We have developed a simple method for measurement of plasma metanephrine, normetanephrine and 3-methoxytyramine using only 150 mL of sample. There is minimal hands-on sample preparation required and the assay is suitable for routine use in a clinical laboratory.
3

MASS SPECTROMETRIC DETECTION OF INDOPHENOLS FROM THE GIBBS REACTION FOR PHENOLS ANALYSIS

Sabyasachy Mistry (7360475) 28 April 2020 (has links)
<p><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a>ABSTRACT</a></p> <p>Phenols are ubiquitous in our surroundings including biological molecules such as L-Dopa metabolites, food components, such as whiskey and liquid smoke, etc. This dissertation describes a new method for detecting phenols, by reaction with Gibbs reagent to form indophenols, followed by mass spectrometric detection. Unlike the standard Gibbs reaction which uses a colorimetric approach, the use of mass spectrometry allows for simultaneous detection of differently substituted phenols. The procedure is demonstrated to work for a large variety of phenols without <i>para</i>‐substitution. With <i>para</i>‐substituted phenols, Gibbs products are still often observed, but the specific product depends on the substituent. For <i>para</i> groups with high electronegativity, such as methoxy or halogens, the reaction proceeds by displacement of the substituent. For groups with lower electronegativity, such as amino or alkyl groups, Gibbs products are observed that retain the substituent, indicating that the reaction occurs at the <i>ortho</i> or <i>meta</i> position. In mixtures of phenols, the relative intensities of the Gibbs products are proportional to the relative concentrations, and concentrations as low as 1 μmol/L can be detected. The method is applied to the qualitative analysis of commercial liquid smoke, and it is found that hickory and mesquite flavors have significantly different phenolic composition.</p> <p>In the course of this study, we used this technique to quantify major phenol derivatives in commercial products such as liquid smoke (catechol, guaiacol and syringol) and whiskey (<i>o</i>-cresol, guaiacol and syringol) as the phenol derivatives are a significant part of the aroma of foodstuffs and alcoholic beverages. For instance, phenolic compounds are partly responsible for the taste, aroma and the smokiness in Liquid Smokes and Scotch whiskies. </p> <p>In the analysis of Liquid Smokes, we have carried out an analysis of phenols in commercial liquid smoke by using the reaction with Gibbs reagent followed by analysis using electrospray ionization mass spectrometry (ESI-MS). This analysis technique allows us to avoid any separation and/or solvent extraction steps before MS analysis. With this analysis, we are able to determine and compare the phenolic compositions of hickory, mesquite, pecan and apple wood flavors of liquid smoke. </p> <p>In the analysis of phenols in whiskey, we describe the detection of the Gibbs products from the phenols in four different commercial Scotch whiskies by using simple ESI-MS. In addition, by addition of an internal standard, 5,6,7,8-tetrahydro-1-napthol (THN), concentrations of the major phenols in the whiskies are readily obtained. With this analysis we are able to determine and compare the composition of phenols in them and their contribution in the taste, smokey, and aroma to the whiskies.</p> <p>Another important class of phenols are found in biological samples, such as L-Dopa and its metabolites, which are neurotransmitters and play important roles in living systems. In this work, we describe the detection of Gibbs products formed from these neurotransmitters after reaction with Gibbs reagent and analysis by using simple ESI‐MS. This technique would be an alternative method for the detection and simultaneous quantification of these neurotransmitters. </p> <p>Finally, in the course of this work, we found that the positive Gibbs tests are obtained for a wide range of <i>para</i>-substituted phenols, and that, in most cases, substitution occurs by displacement of the <i>para</i>-substituent. In addition, there is generally an additional unique second-phenol-addition product, which conveniently can be used from an analytical perspective to distinguish <i>para</i>-substituted phenols from the unsubstituted versions. In addition to using the methodology for phenol analysis, we are examining the mechanism of indophenol formation, particularly with the <i>para</i>-substituted phenols. </p> <p>The importance of peptides to the scientific world is enormous and, therefore, their structures, properties, and reactivity are exceptionally well-characterized by mass spectrometry and electrospray ionization. In the dipeptide work, we have used mass spectrometry to examine the dissociation of dipeptides of phenylalanine (Phe), containing sulfonated tag as a charge carrier (Phe*), proline (Pro) to investigate their gas phase dissociation. The presence of sulfonated tag (SO<sub>3</sub><sup>-</sup>) on the Phe amino acid serves as the charge carrier such that the dipeptide backbone has a canonical structure and is not protonated. Phe-Pro dipeptide and their derivatives were synthesized and analyzed by LCQ-Deca mass spectroscopy to get the fragmentation mechanism. To confirm that fragmentation path, we also synthesized dikitopeparazines and oxazolines from all combinations of the dipeptides. All these analyses were confirmed by isotopic labeling experiments and determination and optimization of structures were carried out using theoretical calculation. We have found that the fragmentation of Phe*Pro and ProPhe* dipeptides form sequence specific b<sub>2</sub> ions. In addition, not only is the ‘mobile proton’ involved in the dissociation process, but also is the ‘backbone hydrogen’ is involved in forming b<sub>2</sub> ions. </p> <p> </p>

Page generated in 0.0779 seconds