• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photocatalytic Properties Of Silver Loaded Titanium Dioxide Powders Produced By Mechanical Ball Milling

Aysin, Basak 01 February 2012 (has links) (PDF)
Silver (Ag) was loaded to three different kinds (P-25, NT-22, and TiO(OH)2) of titanium dioxide (TiO2) powders through adding three different quantities (4.6, 9.2, and 13.8 ml) of silver nitrate (AgNO3) solution by mechanical ball milling process. X-Ray diffraction analysis suggested that Ag was loaded on the TiO2 powders in the form of silver oxide (AgO). SEM, particle size, and BET surface area analyses revealed that TiO2 particles agglomerated after ball milling, resulting in the decrease of specific surface area of the TiO2 powders. Powders P-25, NT-22, and TiO(OH)2 degraded 94 %, 46 %, and 26 %, respectively of MO solution under 1 h UV irradiation. Increasing amount of Ag loading enhanced photocatalytic activity of TiO2 powders under UV irradiation. The best photocatalytic performance was achieved by 13.8 ml AgNO3 solution added NT-22 powders. Percent methyl orange (MO) degradation of 13.8 ml AgNO3 solution added P-25, NT-22, and TiO(OH)2 powders under 1 h UV irradiation was 85 %, 96 %, and 67 %, respectively. Contact angle measurements revealed that hydrophilic properties of TiO2 powders were also improved by Ag loading. Moreover, TiO2 powders gained antibacterial prospect after Ag addition. Ag loaded TiO2 powders could be used effectively for the applications requiring better photocatalytic activity and antibacterial effect.

Page generated in 0.2642 seconds