• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De Rham Theory and Semialgebraic Geometry

Shartser, Leonid 31 August 2011 (has links)
This thesis consists of six chapters and deals with four topics related to De Rham Theory on semialgebraic sets. The first topic deals with L-infinity cohomology on semialgebraic sets. We introduce smooth L-infinity differential forms on a singular (semialgebraic) space X in Rn. Roughly speaking, a smooth L-infinity differential form is a collection of smooth forms on disjoint smooth subsets (stratification) of X with matching tangential components on the adjacent strata and of bounded size (in the metric induced from Rn). We identify the singular homology of X as the homology of the chain complex generated by semialgebraic singular simplices, i.e. continuous semialgebraic maps from the standard simplex into X. Singular cohomology of X is defined as the homology of the Hom dual to the chain complex of the singular chains. Finally, we prove a De Rham type theorem establishing a natural isomorphism between the singular cohomology and the cohomology of smooth L-infinity forms. The second topic is a construction of a Lipschitz deformation retraction on a neighborhood of a point in a semialgebraic set with estimates on its derivatives. Such a deformation retraction is the key to the results of the first and the third topics. The third topic is related to Poincare inequality on a semialgebraic set. We study Poincare type Lp inequality for differential forms on a compact semialgebraic subset of Rn for p >> 1. First we derive a local inequality by using a Lipschitz deformation retraction with estimates on its derivatives from the second topic and then we extend it to a global inequality by employing a technique developed in the appendix. As a consequence we obtain an isomorphism between Lp cohomology and singular cohomology of a normal compact semialgebraic set. The final topic is in the appendix. It deals with an explicit proof of Poincare type inequality for differential forms on compact manifolds. We prove the latter inequality by means of a constructive 'globalization' method of a local Poincare inequality on convex sets. The appendix serves as a model case for the results of the third topic in Chapter 5.
2

De Rham Theory and Semialgebraic Geometry

Shartser, Leonid 31 August 2011 (has links)
This thesis consists of six chapters and deals with four topics related to De Rham Theory on semialgebraic sets. The first topic deals with L-infinity cohomology on semialgebraic sets. We introduce smooth L-infinity differential forms on a singular (semialgebraic) space X in Rn. Roughly speaking, a smooth L-infinity differential form is a collection of smooth forms on disjoint smooth subsets (stratification) of X with matching tangential components on the adjacent strata and of bounded size (in the metric induced from Rn). We identify the singular homology of X as the homology of the chain complex generated by semialgebraic singular simplices, i.e. continuous semialgebraic maps from the standard simplex into X. Singular cohomology of X is defined as the homology of the Hom dual to the chain complex of the singular chains. Finally, we prove a De Rham type theorem establishing a natural isomorphism between the singular cohomology and the cohomology of smooth L-infinity forms. The second topic is a construction of a Lipschitz deformation retraction on a neighborhood of a point in a semialgebraic set with estimates on its derivatives. Such a deformation retraction is the key to the results of the first and the third topics. The third topic is related to Poincare inequality on a semialgebraic set. We study Poincare type Lp inequality for differential forms on a compact semialgebraic subset of Rn for p >> 1. First we derive a local inequality by using a Lipschitz deformation retraction with estimates on its derivatives from the second topic and then we extend it to a global inequality by employing a technique developed in the appendix. As a consequence we obtain an isomorphism between Lp cohomology and singular cohomology of a normal compact semialgebraic set. The final topic is in the appendix. It deals with an explicit proof of Poincare type inequality for differential forms on compact manifolds. We prove the latter inequality by means of a constructive 'globalization' method of a local Poincare inequality on convex sets. The appendix serves as a model case for the results of the third topic in Chapter 5.

Page generated in 0.0835 seconds