• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic management of Mexican bean beetle (Epilachna varivestis Mulsant) in snap bean (Phaseolus vulgaris L.)

Fess, Tiffany L. January 2008 (has links)
Thesis (M.S.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains vi, 98 p. : col. ill., col. maps. Includes abstract. Includes bibliographical references (p. 81-84).
2

Resistance of beans (Phaseolus, Glycine max, Vigna sinensis, Vicia faba, and Dolichos lablab) to the Mexican bean beetle and the potato leafhopper /

Wolfenbarger, Dan January 1961 (has links)
No description available.
3

Population Dynamics for Key Pests in Organic Soybean Fields in Ohio and Suceptibility Differences Between Organic and Conventional Soybean

May, Colleen Elizabeth 08 September 2008 (has links)
No description available.
4

Studies on host plant selection by the Mexican bean beetle, Epilachna varivestis Muls /

Augustine, Mithra Gandham January 1962 (has links)
No description available.
5

A genetic and biochemical study of the antibiosis mechanism of host-plant resistance in soybeans to the Mexican bean beetle /

Rufener, George Keith January 1987 (has links)
No description available.
6

Development and Evaluation of Integrated Approaches for Managing of Mexican Bean Beetle, Epilachna varivestis Mulsant

Nottingham, Louis B. 31 January 2017 (has links)
The Mexican bean beetle, Epilachna varivestis Mulsant, is a major pest of snap beans, Phaseolus vulgaris L. in the Central Appalachian region of the United States. To develop pertinent research objectives, background information on this pest was gathered from literature sources and personal communications with growers, extension agents and other agricultural professionals. In objective one, Mexican bean beetle preference, developmental success and plant injury were compared among three snap bean and three lima bean cultivars in field and greenhouse trials. The cultivar 'Dragon's Tongue' was the most preferred, suitable for development, and prone to injury. Growers may benefit from growing less susceptible cultivars, or by using 'Dragon's Tongue' in trap cropping or push-pull strategies. In objective two, Mexican bean beetle densities, feeding injury, and yield were compared among snap beans grown on metallized plastic (highly reflective), white plastic, black plastic, and bare soil. Metallized plastic provided the greatest level of control, and resulted in the highest yields. Managing Mexican bean beetle by growing beans on metallized plastic may be used as a stand-alone method, or in a push-pull strategy. In the final objective, the effects of snap beans grown from thiamethoxam (a neonicotinoid insecticide)-treated seeds on Mexican bean beetle were assessed in greenhouse and field experiments. Thiamethoxam-treated plants killed 40 to 50% of Mexican bean beetle adults and larvae up to 16 days after planting. In the field, thiamethoxam-treated plants mitigated Mexican bean beetle densities and damage in one out of five experiments, resulting in a yield increase. In none of the five field experiments were differences detected in predatory arthropod species between thiamethoxam and non-insecticide treated beans. In summary, the results of this project suggest that non-chemical management methods, such as cultivar selection and planting beans on reflective mulch, can provide effective control of Mexican bean beetle. Thiamethoxam-treated seed may also provide control of this pest, but only within two to three weeks after planting; otherwise, there is typically no effect on beetles, injury or yield. This doctoral research has laid a foundation for an integrated pest management approach for Mexican bean beetle. / Ph. D.

Page generated in 0.0749 seconds