1 |
Desenvolvimento de um sistema opto-mecânico para micro usinagem com laser de femtosegundos / Development of an opto-mechanical system for micro machining with femtosecond laserJosé Tort Vidal 08 June 2010 (has links)
A usinagem de estruturas micrométricas pode ser feita com pulsos laser de nano, pico ou fentossegundos. Destes, porém, somente os mais curtos podem resultar em uma interação não térmica com a matéria, o que evita a fusão, formação de rebarba e zona afetada pelo calor. Devido à sua baixa potência média, contudo, a sua utilização na produção em massa somente pode ser considerada em casos muito especiais, isto é, quando o processamento não-térmico é essencial. Este é o caso da usinagem de semicondutores, aços elétricos, produção de MEMS (sistemas micro eletro-mecânicos), de micro canais e diversos dispositivos médicos e biológicos. Assim, visando a produção destes tipos de estruturas, uma estação de trabalho foi construída com capacidade de controlar os principais parâmetros de processo necessários para uma usinagem micrométrica com laser de pulsos ultracurtos. Os principais problemas deste tipo de estação são o controle da fluência e do posicionamento do ponto focal. Assim, o controle do diâmetro do feixe (no foco) e da energia devem ser feitos com grande precisão. Além disso, o posicionamento do ponto focal com precisão micrométrica nos três eixos, também é de fundamental importância. O sistema construído neste trabalho apresenta soluções para estes problemas, utilizando diversos sensores e posicionadores controlados simultaneamente por um único programa. A estação de trabalho recebe um feixe vindo de um laser de pulsos ultracurtos localizado em outro laboratório, e manipula este feixe de maneira a focalizá-lo com precisão na superfície da amostra a ser usinada. Os principais parâmetros controlados dinamicamente são a energia, o número de pulsos e o posicionamento individual de cada um deles. A distribuição espacial da intensidade, a polarização e as vibrações também foram medidas e otimizadas. O sistema foi testado e aferido com medidas de limiar de ablação do silício, que é um material bastante estudado neste regime de operação laser. Os resultados, quando confrontados com a literatura, mostram a confiabilidade e a precisão do sistema. A automatização, além de aumentar esta precisão, também aumentou a rapidez na obtenção dos resultados. Medidas de limiar de ablação também foram realizadas para o metal molibdênio, levando a resultados ainda não vistos na literatura. Assim, de acordo com o objetivo inicial, o sistema foi desenvolvido e está pronto para utilização em estudos que levem à produção de estruturas micrométricas. / Machining of very small structures has been made with nano, pico and femtosecond pulsed lasers. Among then, only femtosecond lasers may result in nonthermal interaction with matter, avoiding melting, formation of slag and heat affected zone. Mass production with such lasers yet can only be considered in cases where nonthermal effects are of prime importance. This is the case in machining of semiconductors and electric steels, the production of MEMS, microchannels, and many medical and biological devices. Hence, a workstation for production of such kind of microstructures was built with the capability of controlling the main parameters necessary for the machining process. Control of the laser fluence and focus positioning are the main concern in this kind of processing. So, the control of the laser beam diameter (in the focus) and of the pulse energy must be very precise. Positioning of focal point with micrometric precision in the three axes is also fundamental. The system built in this work provides solutions for these problems incorporating several sensors and positioning stages simultaneously controlled by a single software. The workstation receives a laser beam coming from another laboratory and delivers it to the surface of the sample managing with precision the main process parameters. The system can dynamically control the energy, number of pulses and positioning for each individual laser spot. Besides, the spatial distribution of the laser intensity, polarization and vibrations were also measured and optimized. The system was tested and calibrated with threshold ablation measurement for silicon, which is well studied in this regime of laser operation. The results where compared with data found in the literature and attested the reliability and precision of the system. Besides the increase in precision, the automation also turned much faster the data acquisition. Threshold ablation for metallic molybdenum was also obtained and resulted in data not found in the literature yet. Concluding the initial goal, the workstation was developed and is ready to be used in studies that can lead to production of micrometric structures.
|
2 |
Estruturação a laser em superfícies internas cilíndricas metálicas.José Guilherme Alvarenga Batista Simões 02 July 2009 (has links)
O objetivo deste trabalho foi desenvolver um processo de estruturação a laser em superfícies internas de componentes mecânicos com geometria cilíndrica que são de uso comum em máquinas e motores. A estruturação de superfícies com laser consiste da gravação na superfície do componente, de um grande número de micro-cavidades ordenadas que atuem como micro-reservatórios de lubrificante e como micro-armadilhas de resíduos de desgaste. É um método efetivo para reduzir o atrito e o desgaste de superfícies de contato em movimento. As micro-cavidades formam obtidas neste trabalho com a técnica de ablação a laser utilizando um laser de Nd-YAG bombeado por diodos em modo de chaveamento Q-switched e que emite pulsos curtos (~ 100 ns) de radiação visível (532 nm) com taxas de repetição de pulsos de até 20 kHz. O laser foi caracterizado espacial e temporalmente em uma vasta gama de taxas de repetição de pulsos e correntes de bombeamento. Observou-se que o diâmetro do feixe de laser e a duração temporal do pulso podiam ser descritos como função da energia de pulso do laser. Desse modo, os parâmetros mais importantes que controlam o processo de ablação a laser, i.e., fluência e intensidade foram estimados com uma medição simples da energia de pulso do laser. As micro-cavidades foram então geradas na superfície interna de cilindros de aço AISI 1070 com 30 mm de comprimento e 40 mm de diâmetro variando-se a energia de pulos do laser entre 0,2 mJ e 5 mJ. Um sistema de lentes tripleto f/2 foi projetado para focalizar o feixe multi-modo do laser com um diâmetro de 100 mm. Um dispositivo mecânico desenvolvido no IEAv permitiu posicionar com precisão o feixe de laser focalizado na superfície interna do cilindro com uma resolução inferior a 2,5 mm. O diâmetro e a profundidade das micro-cavidades foram medidas por microscopia óptica e através de um método não destrutivo baseado na réplica em acrílico da superfície estruturada. Foi estabelecida uma carta prática de processo correlacionando a energia e o número de pulsos com as dimensões das micro-cavidades o que permitiu um controle preciso do diâmetro das mesmas no intervalo entre 30 mm e 120 mm e profundidade entre 2 mm e 50 mm.
|
3 |
Estudo experimental de fratura em diafragmas metálicos de túneis de vento hipersônicos usinados com laser a fibra pulsado.Samoel Mirachi 27 August 2010 (has links)
Túneis de vento são ferramentas fundamentais para o estudo da dinâmica dos gases e possibilitam testes de comportamento aerodinâmico de protótipos em regime de escoamento hipersônico. Um tubo de choque é constituído basicamente de uma seção de alta pressão (Driver) e outra de baixa pressão (Driven) separadas por um diafragma de ruptura metálico que atua como uma válvula de pressão rápida conectando ambas as seções. Se acrescentar uma tubeira e um tanque de exaustão, este tubo de choque se torna um túnel de vento hipersônico. A pressão de ruptura do diafragma determina a velocidade de escoamento do gás na seção de baixa pressão e que pode variar desde Mach 6 até Mach 25 no túnel de vento hipersônico instalado no IEAv. Usualmente, o controle da pressão de ruptura é obtido usinando-se microranhuras em forma de cruz na superfície do diafragma metálico que tem por função direcionar a sua fratura e promover sua rápida abertura. A usinagem mecânica das microranhuras é um processo lento e que, com o desgaste natural da ferramenta de corte, apresenta sérios problemas de manutenção das dimensões das microranhuras. Como forma de solucionar este problema é proposta e desenvolvida neste trabalho uma nova técnica de fabricação de microranhuras em diafragmas metálicos utilizando-se um laser pulsado de baixa potência média e com alta taxa de repetição de pulsos. O processo de usinagem a laser permite a obtenção de microranhuras com dimensões reprodutíveis e controláveis com precisão inferior a 0,1 mm, o que favorece o controle preciso da pressão de ruptura do túnel de vento. A gravação das microranhuras foi efetuada em chapas finas de aço AISI 1020 utilizando um laser a fibra de itérbio pulsado com uma potência média de 20 W, largura de pulso de 150 ns e taxa de repetição de 20 kHz. Com este laser foram obtidas microranhuras com larguras inferiores a 0,05 mm e profundidade precisamente controlada entre 0,3 mm e 0,7 mm, controlando com uma mesa CNC com velocidade de usinagem entre 0,5 mm/s e 8,0 mm/s. Os testes de ruptura dos diafragmas de aço foram realizados em um dispositivo hidráulico acionado por pistão desenvolvido neste trabalho e também no túnel de vento hipersônico T1 do IEAv. A pressão de ruptura dos diafragmas obtida com o dispositivo hidráulico foram equivalentes àquela obtida nos testes efetuados no T1. Dessa forma mostra-se ser possível desenvolver e qualificar os diafragmas sem a necessidade de testes no T1, reduzindo o seu custo de fabricação. Com a técnica de gravação a laser utilizada no trabalho a pressão de ruptura no túnel de vento hipersônico pode ser controlada precisamente no intervalo de pressão entre 30 bar e 120 bar, com grande redução no tempo de fabricação e sem perda de reprodutibilidade.
|
4 |
Desenvolvimento de um sistema opto-mecânico para micro usinagem com laser de femtosegundos / Development of an opto-mechanical system for micro machining with femtosecond laserVidal, José Tort 08 June 2010 (has links)
A usinagem de estruturas micrométricas pode ser feita com pulsos laser de nano, pico ou fentossegundos. Destes, porém, somente os mais curtos podem resultar em uma interação não térmica com a matéria, o que evita a fusão, formação de rebarba e zona afetada pelo calor. Devido à sua baixa potência média, contudo, a sua utilização na produção em massa somente pode ser considerada em casos muito especiais, isto é, quando o processamento não-térmico é essencial. Este é o caso da usinagem de semicondutores, aços elétricos, produção de MEMS (sistemas micro eletro-mecânicos), de micro canais e diversos dispositivos médicos e biológicos. Assim, visando a produção destes tipos de estruturas, uma estação de trabalho foi construída com capacidade de controlar os principais parâmetros de processo necessários para uma usinagem micrométrica com laser de pulsos ultracurtos. Os principais problemas deste tipo de estação são o controle da fluência e do posicionamento do ponto focal. Assim, o controle do diâmetro do feixe (no foco) e da energia devem ser feitos com grande precisão. Além disso, o posicionamento do ponto focal com precisão micrométrica nos três eixos, também é de fundamental importância. O sistema construído neste trabalho apresenta soluções para estes problemas, utilizando diversos sensores e posicionadores controlados simultaneamente por um único programa. A estação de trabalho recebe um feixe vindo de um laser de pulsos ultracurtos localizado em outro laboratório, e manipula este feixe de maneira a focalizá-lo com precisão na superfície da amostra a ser usinada. Os principais parâmetros controlados dinamicamente são a energia, o número de pulsos e o posicionamento individual de cada um deles. A distribuição espacial da intensidade, a polarização e as vibrações também foram medidas e otimizadas. O sistema foi testado e aferido com medidas de limiar de ablação do silício, que é um material bastante estudado neste regime de operação laser. Os resultados, quando confrontados com a literatura, mostram a confiabilidade e a precisão do sistema. A automatização, além de aumentar esta precisão, também aumentou a rapidez na obtenção dos resultados. Medidas de limiar de ablação também foram realizadas para o metal molibdênio, levando a resultados ainda não vistos na literatura. Assim, de acordo com o objetivo inicial, o sistema foi desenvolvido e está pronto para utilização em estudos que levem à produção de estruturas micrométricas. / Machining of very small structures has been made with nano, pico and femtosecond pulsed lasers. Among then, only femtosecond lasers may result in nonthermal interaction with matter, avoiding melting, formation of slag and heat affected zone. Mass production with such lasers yet can only be considered in cases where nonthermal effects are of prime importance. This is the case in machining of semiconductors and electric steels, the production of MEMS, microchannels, and many medical and biological devices. Hence, a workstation for production of such kind of microstructures was built with the capability of controlling the main parameters necessary for the machining process. Control of the laser fluence and focus positioning are the main concern in this kind of processing. So, the control of the laser beam diameter (in the focus) and of the pulse energy must be very precise. Positioning of focal point with micrometric precision in the three axes is also fundamental. The system built in this work provides solutions for these problems incorporating several sensors and positioning stages simultaneously controlled by a single software. The workstation receives a laser beam coming from another laboratory and delivers it to the surface of the sample managing with precision the main process parameters. The system can dynamically control the energy, number of pulses and positioning for each individual laser spot. Besides, the spatial distribution of the laser intensity, polarization and vibrations were also measured and optimized. The system was tested and calibrated with threshold ablation measurement for silicon, which is well studied in this regime of laser operation. The results where compared with data found in the literature and attested the reliability and precision of the system. Besides the increase in precision, the automation also turned much faster the data acquisition. Threshold ablation for metallic molybdenum was also obtained and resulted in data not found in the literature yet. Concluding the initial goal, the workstation was developed and is ready to be used in studies that can lead to production of micrometric structures.
|
Page generated in 0.4498 seconds