• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite element modelling of the mechanics of solid foam materials

Ribeiro-Ayeh, Steven January 2005 (has links)
<p>Failure of bi-material interfaces is studied with the aim to quantify the influence of the induced stress concentrations on the strength of the interfaces. A simple point-stress criterion, used in conjunction with finite element calculations, is evaluated to provide strength predictions for bi-material bonded joints and inserts in polymer foam. The influence of local stress concentrations on the initiation of fracture at open and closed wedge bi-material interfaces is investigated. The joint combinations are analysed numerically and the strength predictions obtained from the point-stress criterion are verified in experiments. </p><p>The predictions are made using a simple point-stress criterion in combination with highly accurate finite element calculations. The point-stress criterion was known from earlier work to give accurate predictions of failure at cracks and notches but had to be slightly modified to become applicable for the studied configurations. The criterion showed to be generally applicable to the bi-material interfaces studied herein. Sensible predictions for the tendentious strength behaviour could be made with reasonable accuracy, including the prediction of crossover from local, joint-induced failure to global failure. </p><p>To study the micromechanical properties of a cellular solid with arbitrary topology, various models of a closed-cell foam are created on the basis of random Voronoi tessellations. The foam models are analysed using the finite element method and the effective elastic properties of the model cellular solids are determined. The calculated moduli are compared to the properties of a real reference foam and the numerical results show to be in very good agreement. </p><p>The mechanical properties of closed-cell, low-density cellular solids are governed by the stiffnesses of the cell edges and the cell faces. Models of idealised foam models with planar cell faces, cannot account for the curved faces found on some metal and polymer foams. Finite element models of closed-cell foams were created to analyse the influence of cell face curvature on the stiffness of the foam. By determining the elastic modulus for foams with non-planar cell faces, the effect of cell face curvature could be analysed as a function of the relative density and the distribution of solid material between cell edges and faces. </p><p>Foam models were generated from disturbed point distribution lattices and compared to models obtained from random distributions. The aim was to analyse if and how the geometry of the cells and their spatial arrangement influences the mechanical properties of a foam. The results suggest that the spatial arrangement and the geometry of the cells have significant influence on the properties of a foam. The elastic properties calculated for models from disturbed foam structures underestimated the elastic moduli of the foam, whereas models from random structures provided results which were in very good agreement with a reference foam.</p>
2

Finite element modelling of the mechanics of solid foam materials

Ribeiro-Ayeh, Steven January 2005 (has links)
Failure of bi-material interfaces is studied with the aim to quantify the influence of the induced stress concentrations on the strength of the interfaces. A simple point-stress criterion, used in conjunction with finite element calculations, is evaluated to provide strength predictions for bi-material bonded joints and inserts in polymer foam. The influence of local stress concentrations on the initiation of fracture at open and closed wedge bi-material interfaces is investigated. The joint combinations are analysed numerically and the strength predictions obtained from the point-stress criterion are verified in experiments. The predictions are made using a simple point-stress criterion in combination with highly accurate finite element calculations. The point-stress criterion was known from earlier work to give accurate predictions of failure at cracks and notches but had to be slightly modified to become applicable for the studied configurations. The criterion showed to be generally applicable to the bi-material interfaces studied herein. Sensible predictions for the tendentious strength behaviour could be made with reasonable accuracy, including the prediction of crossover from local, joint-induced failure to global failure. To study the micromechanical properties of a cellular solid with arbitrary topology, various models of a closed-cell foam are created on the basis of random Voronoi tessellations. The foam models are analysed using the finite element method and the effective elastic properties of the model cellular solids are determined. The calculated moduli are compared to the properties of a real reference foam and the numerical results show to be in very good agreement. The mechanical properties of closed-cell, low-density cellular solids are governed by the stiffnesses of the cell edges and the cell faces. Models of idealised foam models with planar cell faces, cannot account for the curved faces found on some metal and polymer foams. Finite element models of closed-cell foams were created to analyse the influence of cell face curvature on the stiffness of the foam. By determining the elastic modulus for foams with non-planar cell faces, the effect of cell face curvature could be analysed as a function of the relative density and the distribution of solid material between cell edges and faces. Foam models were generated from disturbed point distribution lattices and compared to models obtained from random distributions. The aim was to analyse if and how the geometry of the cells and their spatial arrangement influences the mechanical properties of a foam. The results suggest that the spatial arrangement and the geometry of the cells have significant influence on the properties of a foam. The elastic properties calculated for models from disturbed foam structures underestimated the elastic moduli of the foam, whereas models from random structures provided results which were in very good agreement with a reference foam. / QC 20101011
3

Thin-walled composite deployable booms with tape-spring hinges

Mallikarachchi, H. M. Yasitha Chinthaka January 2011 (has links)
Deployable structures made from ultra-thin composite materials can be folded elastically and are able to self-deploy by releasing the stored strain energy. Their lightness, low cost due to smaller number of components, and friction insensitive behaviour are key attractions for space applications. This dissertation presents a design methodology for lightweight composite booms with multiple tape-spring hinges. The whole process of folding and deployment of the tape-spring hinges under both quasi-static and dynamic loading has been captured in detail through finite element simulations, starting from a micro-mechanical model of the laminate based on the measured geometry and elastic properties of the woven tows. A stress-resultant based six-dimensional failure criterion has been developed for checking if the structure would be damaged. A detailed study of the quasi-static folding and deployment of a tape-spring hinge made from a two-ply plain-weave laminate of carbon-fibre reinforced plastic has been carried out. A particular version of this hinge was constructed and its moment-rotation profile during quasi-static deployment was measured. Folding and deployment simulations of the tape-spring hinge were carried out with the commercial finite element package Abaqus/Explicit, starting from the as-built, unstrained structure. The folding simulation includes the effects of pinching the hinge in the middle to reduce the peak moment required to fold it. The deployment simulation fully captures both the steady-state moment part of the deployment and the final snap back to the deployed configuration. An alternative simulation without pinching the hinge provides an estimate of the maximum moment that could be carried by the hinge during operation. This moment is about double the snap-back moment for the particular hinge design that was considered. The dynamic deployment of a tape-spring hinge boom has been studied both experimentally and by means of detailed finite-element simulations. It has been shown that the deployment of the boom can be divided into three phases: deployment; latching, which may involve buckling of the tape springs and large rotations of the boom; and vibration of the boom in the latched configuration. The second phase is the most critical as the boom can fold backwards and hence interfere with other spacecraft components. A geometric optimisation study was carried out by parameterising the slot geometry in terms of slot length, width and end circle diameter. The stress-resultant based failure criterion was then used to analyse the safety of the structure. The optimisation study was focused on finding a hinge design that can be folded 180 degrees with the shortest possible slot length. Simulations have shown that the strains can be significantly reduced by allowing the end cross-sections to deform freely. Based on the simulations a failure-critical design and a failure-safe design were selected and experimentally verified. The failure-safe optimised design is six times stiffer in torsion, twice stiffer axially and stores two and a half times more strain energy than the previously considered design. Finally, an example of designing a 1 m long self-deployable boom that could be folded around a spacecraft has been presented. The safety of this two-hinge boom has been evaluated during both stowage and dynamic deployment. A safe design that latches without any overshoot was selected and validated by a dynamic deployment experiment.

Page generated in 0.0844 seconds