Spelling suggestions: "subject:"microrelais"" "subject:"microrelays""
1 |
Étude expérimentale et modélisation du contact électrique et mécanique quasi statique entre surfaces rugueuses d'or : application aux micro-relais memsDuvivier, Pierre-Yves 25 November 2010 (has links) (PDF)
L'étude du contact électrique quasi statique à plusieurs échelles permet de comprendre celui des micro-relais MEMS. Au cours de ce travail, une modélisation fine du contact est développée pour valider des lois de comportement établies à partir des mesures obtenues grâce à la mise au point de deux dispositifs expérimentaux originaux : la balance de précision, qui permet de réaliser un contact à l'échelle macroscopique entre barreaux croisés recouverts des films minces des matériaux à tester, et un nanoindenteur instrumenté pour la mesure électrique reproduisant un micro-contact identique à celui des micro-relais. Ils permettent tous deux de mener une étude comparative de différents échantillons en fonction de la force (de la dizaine de µN à quelques N), du courant (du µA à l'A), de l'état de surface (rugosité) ou encore du temps ; le contact étant caractérisé par sa résistance électrique. Ce travail concerne principalement le contact réalisé entre films minces en Au, matériau de contact de référence pour les applications micro-relais MEMS. L'étude des contacts de grande dimension a néanmoins été élargie à Ru, Rh, Pt et à l'alliage Au-Ni.Les résultats obtenus à l'aide de la balance de précision ont démontré la nécessité de prendre en compte l'influence de la configuration en film mince des matériaux de contact, tant du point de vue mécanique (rugosité) qu'électrique (répartition des lignes de courant). Leur comparaison à une modélisation statistique du contact rugueux donne des résultats satisfaisants. Cette approche a par ailleurs nécessité le développement d'un algorithme d'analyse d'image des relevés topographiques réalisés au microscope à force atomique, permettant ainsi de quantifier précisément les positions, taille et rayon de courbure de chaque aspérité de la surface.Les mesures effectuées à l'aide du nanoindenteur ont mis en évidence l'effet de la durée de fermeture des microcontacts sur la valeur de la résistance électrique. Le fluage des aspérités serait en partie responsable de la décroissance temporelle observée, aboutissant à des valeurs de résistance limite comparables à celles calculées à l'aide d'une modélisation numérique du contact entre des aspérités discrétisées et une sphère lisse.
|
2 |
CONCEPTION, MODELISATION ET FABRICATION D'UN MICRO-ACTIONNEUR BISTABLE, HORS PLAN ET MAGNETIQUERostaing, Hervé 15 December 2004 (has links) (PDF)
Au sein de l'équipe Microsystèmes Magnétiques du Laboratoire d' Electrotechnique de Grenoble, nous avons conçu et modélisé un micro-actionneur bistable entièrement intégré, ayant une partie mobile se déplaçant de 120 µm en moins de 500 µs et de surface inférieure à 10 mm². L'actionnement est magnétique. La partie mobile, constituée d'un micro-aimant en CoPt, se déplaçe verticalement sans aucun contact mécanique (lévitation) entre ses deux butées, également constituées de micro-aimants. La modélisation statique puis dynamique (6 DDL) a été faite grâce à deux logiciels : Dipole 3D et Mathcad. L'optimisation avec Pro@Design des paramètres géométriques du micro-actionneur a permis de fortement réduire le courant et donc l'énergie de commutation (20 µJ). Une étude thermique expérimentale et théorique du micro-actionneur montre que les conducteurs peuvent être alimentés par des impulsions de courant de 90000 A/mm² pendant 500 µs. Les briques de bases technologiques ont été mises au point et validées dans les salles blanches du CEA-LETI. Le micro-actionneur est en cours de prototypage.
|
3 |
Étude expérimentale et modélisation du contact électrique et mécanique quasi statique entre surfaces rugueuses d'or : application aux micro-relais mems / Experimental study and modeling of electrical and mechanical quasistatic contact between gold rough surfaces : application to mems microswitchesDuvivier, Pierre-Yves 25 November 2010 (has links)
L’étude du contact électrique quasi statique à plusieurs échelles permet de comprendre celui des micro-relais MEMS. Au cours de ce travail, une modélisation fine du contact est développée pour valider des lois de comportement établies à partir des mesures obtenues grâce à la mise au point de deux dispositifs expérimentaux originaux : la balance de précision, qui permet de réaliser un contact à l’échelle macroscopique entre barreaux croisés recouverts des films minces des matériaux à tester, et un nanoindenteur instrumenté pour la mesure électrique reproduisant un micro-contact identique à celui des micro-relais. Ils permettent tous deux de mener une étude comparative de différents échantillons en fonction de la force (de la dizaine de µN à quelques N), du courant (du µA à l’A), de l’état de surface (rugosité) ou encore du temps ; le contact étant caractérisé par sa résistance électrique. Ce travail concerne principalement le contact réalisé entre films minces en Au, matériau de contact de référence pour les applications micro-relais MEMS. L’étude des contacts de grande dimension a néanmoins été élargie à Ru, Rh, Pt et à l’alliage Au-Ni.Les résultats obtenus à l’aide de la balance de précision ont démontré la nécessité de prendre en compte l’influence de la configuration en film mince des matériaux de contact, tant du point de vue mécanique (rugosité) qu’électrique (répartition des lignes de courant). Leur comparaison à une modélisation statistique du contact rugueux donne des résultats satisfaisants. Cette approche a par ailleurs nécessité le développement d’un algorithme d’analyse d’image des relevés topographiques réalisés au microscope à force atomique, permettant ainsi de quantifier précisément les positions, taille et rayon de courbure de chaque aspérité de la surface.Les mesures effectuées à l’aide du nanoindenteur ont mis en évidence l’effet de la durée de fermeture des microcontacts sur la valeur de la résistance électrique. Le fluage des aspérités serait en partie responsable de la décroissance temporelle observée, aboutissant à des valeurs de résistance limite comparables à celles calculées à l’aide d'une modélisation numérique du contact entre des aspérités discrétisées et une sphère lisse. / The multi scale study of quasi static electrical contact is aimed at understanding those in MEMS microswitches. In this work, an accurate modeling of contact is developed to validate constitutive relations based on measurements obtained through the development of two original experimental set ups: a precision balance, which enables to perform a macroscopic contact between crossed roads coated with thin films of the materials to be tested, and a nanoindenter instrumented for electrical measurements reproducing microswitches contacts. They both allow a comparative study of different samples depending on the force (from μN to N), current (µA to A), surface condition (roughness) or time, while the contact is characterized through its electrical resistance. The measurements are obtained in the first place for gold, the reference contact material for MEMS microswitches applications. The study of large contacts was nevertheless extended to Ru, Rh, Pt and Au-Ni alloy.The results obtained using the precision balance showed the need to take into account the influence of the thin film configuration of contact materials, both in terms of mechanical (roughness) and electrical (distribution of current lines). Their comparison to a statistical model of rough contact gives satisfactory results. This approach also required the development of an image analysis algorithm of topographic maps obtained through atomic force microscopy. It allows quantifying precisely the position, height and radius of curvature of each surface asperity.Measurements made using the nanoindenter showed the effect of the time of closure of the micro contact on electrical resistance values. The creep of asperities may be partly responsible for the observed time decay, leading to limit resistance values comparable to those calculated using a numerical modeling of the contact between discretized asperities and a smooth sphere.
|
4 |
Etude des mécanismes de défaillance du contact électrique dans un micro-interrupteur en technologie MEMSMaxime, Vincent 07 May 2010 (has links) (PDF)
Le but de cette thèse est l'amélioration, en termes de performances et de fiabilité, du contact électrique d'un micro-interrupteur en technologie MEMS. Ces travaux s'inscrivent dans le cadre d'une collaboration entre la Direction de l'Innovation de Schneider Electric et le Département d'Intégration Hétérogène sur Silicium du CEA-Leti. De cette collaboration a résulté un micro-interrupteur MEMS dont la fiabilité est supérieure à l'état de l'art mondial. Sa durée de vie est cependant limitée par la dégradation de son contact électrique. La première partie de cette thèse a ainsi porté sur l'étude des mécanismes à l'origine des défaillances de ce contact. Les essais d'endurance électrique avec courant coupé (« hot switching ») réalisés directement sur les prototypes de micro-interrupteurs, couplés à des analyses physico-chimiques et électriques ont permis d'identifier cinq mécanismes de défaillance principaux, différant en fonction du matériau de contact utilisé et du calibre de test. La seconde partie de la thèse présente le développement d'un banc permettant d'évaluer l'endurance de nouveaux matériaux de contact en remplacement de l'or et du ruthénium utilisés dans le micro-interrupteur. Ce banc d'endurance a été intégralement développé, réalisé et testé durant la thèse. Il reproduit le fonctionnement d'un micro-contact électrique et permet de réaliser plusieurs millions de cycles de fermeture/ouverture en faisant varier de nombreuses conditions de test telles que l'atmosphère environnante. La troisième partie de ce travail porte sur l'étude des mécanismes d'établissement et d'interruption du courant lorsque l'espace inter-contacts est réduit à quelques dizaines de nanomètres. L'utilisation non conventionnelle d'un microscope à force atomique à pointe conductrice en mode approche-retrait a permis de simuler à vitesse réduite l'actionnement d'un micro-contact. Cette étude a mis en évidence un phénomène d'émission électronique Fowler-Nordheim lors des derniers instants précédant la fermeture du contact. Les conséquences de cette émission électronique sont une dégradation des matériaux de contact, aboutissant à un transfert du matériau de contact de l'anode vers la cathode. L'ensemble de ces travaux est alors utilisé dans le chapitre de conclusion pour définir les règles de conception d'un micro-contact fiable.
|
5 |
Maitrise de la microstructure de films minces d'or par traitements de surface pour l'optimisation du contact mécanique et ohmique des micro-relais mems. / Surface improvement by microstructural control of gold thin films for ohmic mems switch contact.Arrazat, Brice 21 February 2012 (has links)
Afin d’améliorer la durée de vie des micro-relais MEMS ohmiques, plusieurs traitements de surface de films minces d’or sont réalisés pour augmenter leur dureté tout en conservant une résistance électrique de contact faible.Les revêtements ultrafins de ruthénium (20 à 100 nm) déposés sur l’or augmentent la dureté des surfaces de contact d’un facteur 15. L’implantation ionique de bore ou d’azote (3,5 ppm à 10 % atomique) à une profondeur de 100 nm dans le film mince d’or permet d’atteindre un gain en dureté de 75%. Le contrôle (AFM, EBSD et DRX) de la microstructure induite met en évidence le durcissement par solution solide par insertion. Mais au-delà de 1% atomique, les atomes d’azote quittent le réseau cristallin de l’or pour former des précipités de nitrure d’or.L’analyse AFM (rugosité et diamètre) des empreintes résiduelles (quelques μm²) réalisées par nano-indentation sphérique, imitant le cyclage et le fluage des surfaces de contact de ces MEMS, démontre l’apport de ces traitements de surface. De plus, leurs résistances électriques de contact, mesurées par nano-indentation instrumentée reproduisant un micro-contact identique à un dispositif réel, sont similaires à celle de l’or pur.La modélisation discrète mécanique du contact rugueux est ajustée à la mesure de la déformation mécanique de nano-rugosités en comparant les relevés topographiques réalisés par AFM avant et après nano-indentation sphérique. La comparaison entre la modélisation et la mesure de la résistance électrique de contact indique que pour les gammes de force utilisées dans les micro-relais MEMS (inférieure au mN), seule une fraction allant de 2% à 9% de la surface de contact réelle est conductrice. / Ohmic MEMS switches made by gold thin films are promising devices but their mechanical contacts are one of the critical concerns for enhancing reliability. For this reason, surface processes are investigated in this work to improve both mechanical and electrical contact resistance (ECR) of MEMS gold contacts. Ruthenium ultra-thin films (20 to 100 nm) deposited on a top of gold layer increase surface hardness by a factor of fifteen. In parallel, surface implantations of both boron (<10% atomic) or nitrogen (<0.1% atomic) into gold reveals a solid solution hardening by insertion, thus increasing the hardness of initial film by about 75% and 25%, respectively. Notably, above 0.1% atomic of nitrogen, atoms precipitate from the tetra or octahedral sites of gold inducing a decrease of hardness.Static and multi load/unload spherical nano-indentation are performed on treated gold thin films to simulate the mechanical actuation of ohmic MEMS switches. Analysis of residual imprints (about few µm²) from treated surface exhibits both minimal local deformation and adhesion forces that reduce stiction probability. In-situ measurement of ECR for treated gold by instrumented nano-indentation, reproducing the design of MEMS, is in the same range of pure gold-to-gold configuration.A new mechanical discrete model of rough contact is introduced, confronted and validated to the experimental mechanical surface deformation obtained by comparison of AFM images before and after spherical nano-indentation. An electrical discrete model is added and fitted to the ECR measurements. In ohmic MEMS switch load range (< 1 mN), the conductive area is found to be about 2% to 9% of the real contact area.
|
Page generated in 0.0531 seconds