• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a Propulsion System for Swimming Under Low Reynolds Flow Conditions

Wybenga, Michael William January 2007 (has links)
This work focuses on the propulsion of swimming micro-robots through accessible, quasi-static, fluid-filled, environments of the human body. The operating environment dictates that the system must function under low Reynolds number flow conditions. In this fluidic regime, viscous forces dominate. Inspiration is drawn from biological examples of propulsion systems that exploit the dominance of viscous forces. A system based on the prokaryotic flagella is chosen due to its simplicity; it is essentially a rigid helix that rotates about its base. To eliminate the piercing threat posed by a rigid helix, a propulsion system utilizing a flexible filament is proposed. The filament is designed such that under rotational load, and the resulting viscous drag, it contorts into a helix and provides propulsive force. Four mathematical models are created to investigate the behaviour of the proposed flexible filament. An experimental prototype of the flexible tail is built for similar purposes. An experimental rigid tail is also built to serve as a benchmark. The experimental results for propulsive force generated by the rigid tail match the Resistive-Force Theory (RFT) model. An analysis of the system concludes that experimental error is likely minor. An ADAMS model of the rigid tail, as a result of modelling error, under-predicts the propulsive force. The experimental flexible filament shows that the proposed propulsion system is feasible. When actuated, the tail contorts into a `helix-like' shape and generates propulsive force. An ADAMS model of an ideal flexible filament shows that, if a complete helix is formed, there is no loss in performance when compared to a rigid counterpart. The experimental filament is too stiff to form a complete helix and, accordingly, the ADAMS model does not simulate the filament well. To decrease this discrepancy, a second ADAMS model, attempting to directly simulate the experimental filament, rather than an ideal one, is created. Regardless, the second ADAMS model gives confidence that a multi-body dynamic model using lumped-parameter drag forces, after further modifications, can simulate the experimental flexible filament well.
2

Design of a Propulsion System for Swimming Under Low Reynolds Flow Conditions

Wybenga, Michael William January 2007 (has links)
This work focuses on the propulsion of swimming micro-robots through accessible, quasi-static, fluid-filled, environments of the human body. The operating environment dictates that the system must function under low Reynolds number flow conditions. In this fluidic regime, viscous forces dominate. Inspiration is drawn from biological examples of propulsion systems that exploit the dominance of viscous forces. A system based on the prokaryotic flagella is chosen due to its simplicity; it is essentially a rigid helix that rotates about its base. To eliminate the piercing threat posed by a rigid helix, a propulsion system utilizing a flexible filament is proposed. The filament is designed such that under rotational load, and the resulting viscous drag, it contorts into a helix and provides propulsive force. Four mathematical models are created to investigate the behaviour of the proposed flexible filament. An experimental prototype of the flexible tail is built for similar purposes. An experimental rigid tail is also built to serve as a benchmark. The experimental results for propulsive force generated by the rigid tail match the Resistive-Force Theory (RFT) model. An analysis of the system concludes that experimental error is likely minor. An ADAMS model of the rigid tail, as a result of modelling error, under-predicts the propulsive force. The experimental flexible filament shows that the proposed propulsion system is feasible. When actuated, the tail contorts into a `helix-like' shape and generates propulsive force. An ADAMS model of an ideal flexible filament shows that, if a complete helix is formed, there is no loss in performance when compared to a rigid counterpart. The experimental filament is too stiff to form a complete helix and, accordingly, the ADAMS model does not simulate the filament well. To decrease this discrepancy, a second ADAMS model, attempting to directly simulate the experimental filament, rather than an ideal one, is created. Regardless, the second ADAMS model gives confidence that a multi-body dynamic model using lumped-parameter drag forces, after further modifications, can simulate the experimental flexible filament well.
3

Design, Production And Development Of Mini/micro Robots To Form A Cooperative Colony

Basaran, Dilek 01 September 2003 (has links) (PDF)
Design, production and development of individual mini/micro robots and then formation of their cooperative colony are the main topics of this thesis. The produced mini/micro robots are as small and light as possible. In addition, they are multifunctional (programmable), flexible and intelligent while maintaining a very low production cost. Mini/micro robots, called MinT-DB series are able to communicate with each other to work cooperatively. Moreover, these robots can be the basis for the future studies considering the application of artificial intelligence and modeling of live colonies in the nature. Traditional design, production and assembly techniques have been used widely up to now. However, none of them were related with the mini/micro scale. Therefore, this thesis can help people in understanding the difficulties of the design, production, and assembly of the mini/micro systems under the light of the reported science. In this thesis, instead of examining a specific application field of mini/micro robotic systems, a technology demonstrative work is carried out. Therefore, this thesis contributes to the mini/micro robotic technology, which is also very new and popular in today&amp / #8217 / s world, with the robots having the dimensions of 7.5x6x6 cm.
4

Modélisation dynamique de la locomotion compliante : Application au vol battant bio-inspiré de l'insecte

Belkhiri, Ayman 03 October 2013 (has links) (PDF)
Le travail présenté dans cette thèse est consacré à la modélisation de la dynamique de locomotion des "soft robots", i.e. les systèmes multi-corps mobiles compliants. Ces compliances peuvent être localisées et considérées comme des liaisons passives du système,ou bien introduites par des flexibilités distribuées le long des corps. La dynamique de ces systèmes est modélisée en adoptant une approche Lagrangienne basée sur les outils mathématiques développés par l'école américaine de mécanique géométrique. Du point de vue algorithmique, le calcul de ces modèles dynamiques s'appuie sur un algorithme récursif et efficace de type Newton-Euler, ici étendu aux robots locomoteurs munis d'organes compliants. Poursuivant des objectifs de commande et de simulation rapide pour la robotique, l'algorithme proposé est capable de résoudre la dynamique externe directe ainsi que la dynamique inverse des couples internes. Afin de mettre en pratique l'ensemble de ces outils de modélisation, nous avons pris le vol battant des insectes comme exemple illustratif. Les équations non-linéaires qui régissent les déformations passives de l'aile sont établies en appliquant deux méthodes différentes. La première consiste à séparer le mouvement de l'aile en une composante rigide dite de "repère flottant" et une composante de déformation. Cette dernière est paramétrée dans le repère flottant par la méthode des modes supposés ici appliquée à l'aile vue comme une poutre d'Euler-Bernoulli soumise à la flexion et à la torsion. Quant à la seconde approche, les mouvements de l'aile n'y sont pas séparés mais directement paramétrés par les transformations finies rigides et absolues d'une poutre Cosserat. Cette approche est dite Galiléenne ou "géométriquement exacte" en raison du fait qu'elle ne requiert aucune approximation en dehors des inévitables discrétisations spatiale et temporelle imposées parla résolution numérique de la dynamique du vol. Dans les deux cas,les forces aérodynamiques sont prises en compte via un modèle analytique simplifié de type Dickinson. Les modèles et algorithmes résultants sont appliqués à la conception d'un simulateur du vol, ainsi qu'à la conception d'un prototype d'aile, dans le contexte du projet coopératif (ANR) EVA.
5

Modélisation dynamique de la locomotion compliante : Application au vol battant bio-inspiré de l'insecte / Dynamics modeling of compliant locomotion : Application to flapping flight bio-inspired by insects

Belkhiri, Ayman 03 October 2013 (has links)
Le travail présenté dans cette thèse est consacré à la modélisation de la dynamique de locomotion des "soft robots", i.e. les systèmes multi-corps mobiles compliants. Ces compliances peuvent être localisées et considérées comme des liaisons passives du système,ou bien introduites par des flexibilités distribuées le long des corps. La dynamique de ces systèmes est modélisée en adoptant une approche Lagrangienne basée sur les outils mathématiques développés par l’école américaine de mécanique géométrique. Du point de vue algorithmique, le calcul de ces modèles dynamiques s’appuie sur un algorithme récursif et efficace de type Newton-Euler, ici étendu aux robots locomoteurs munis d’organes compliants. Poursuivant des objectifs de commande et de simulation rapide pour la robotique, l’algorithme proposé est capable de résoudre la dynamique externe directe ainsi que la dynamique inverse des couples internes. Afin de mettre en pratique l’ensemble de ces outils de modélisation, nous avons pris le vol battant des insectes comme exemple illustratif. Les équations non-linéaires qui régissent les déformations passives de l’aile sont établies en appliquant deux méthodes différentes. La première consiste à séparer le mouvement de l’aile en une composante rigide dite de "repère flottant" et une composante de déformation. Cette dernière est paramétrée dans le repère flottant par la méthode des modes supposés ici appliquée à l’aile vue comme une poutre d’Euler-Bernoulli soumise à la flexion et à la torsion. Quant à la seconde approche, les mouvements de l’aile n’y sont pas séparés mais directement paramétrés par les transformations finies rigides et absolues d’une poutre Cosserat. Cette approche est dite Galiléenne ou "géométriquement exacte" en raison du fait qu’elle ne requiert aucune approximation en dehors des inévitables discrétisations spatiale et temporelle imposées parla résolution numérique de la dynamique du vol. Dans les deux cas,les forces aérodynamiques sont prises en compte via un modèle analytique simplifié de type Dickinson. Les modèles et algorithmes résultants sont appliqués à la conception d’un simulateur du vol, ainsi qu’à la conception d’un prototype d’aile, dans le contexte du projet coopératif (ANR) EVA. / The objective of the present work is to model the locomotion dynamics of "soft robots", i.e. compliant mobile multi-body systems. These compliances can be either localized and treated as passive joints of the system, or introduced by distributed flexibilities along the bodies. The dynamics of these systems is modeled in a Lagrangian approach based on the mathematical tools developed by the American school of geometric mechanics. From the algorithmic viewpoint, the computation of these dynamic models is based on a recursive and efficient Newton-Euler algorithm which is extended here to the case of robots equipped with compliant organs. The proposed algorithm is compatible with control, fast simulation and real time robotic applications. It is able to solve the direct external dynamics as well as the inverse internal torque dynamics. The modeling tools and algorithms developed in this thesis are applied to one of the most advanced cases of compliante locomotion i.e. the flapping flight MAVs bio-inspired by insects. The nonlinear equations governing the passive deformations of the wing are derived using two different methods. In the first method, we separate the wing movement into a rigid component (which corresponds to the movements of a "floating frame"), and a deformation component. The latter one is parameterized in the floating frame using the assumed modes approach where the wing is considered as an Euler-Bernoulli beam undergoing flexion and torsion deformations. Regarding the second method, the wing movements are no longer separated but directly parameterize dusing rigid finite absolute transformations of a Cosserat beam. This method is called Galilean or "geometrically exact" because it does not require any approximation apart from the unavoidable spatial and temporal discretizations imposed by numerical resolution of the flight dynamics. In both cases, the aerodynamic forces are taken into account through a simplified analytical model. The resulting models and algorithms are used in the context of the collaborative project (ANR) EVA to develop a flight simulator, and to design wing prototype.

Page generated in 0.106 seconds