• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MicroRNA-125b Prevents Cardiac Dysfunction in Polymicrobial Sepsis by Targeting TRAF6-Mediated Nuclear Factor κb Activation and p53-Mediated Apoptotic Signaling

Ma, He, Wang, Xiaohui, Ha, Tuanzhu, Gao, Ming, Liu, Li, Wang, Ruitao, Yu, Kaijiang, Kalbfleisch, John H., Kao, Race L., Williams, David L., Li, Chuanfu 01 December 2016 (has links)
Background. This study examined the effect of microRNA-125b (miR-125b) on sepsis-induced cardiac dysfunction. Methods. Mouse hearts were transfected with lentivirus expressing miR-125b (LmiR-125b) 7 days before cecal ligation and puncture (CLP)-induced sepsis. Cardiac function was examined by echocardiography before and 6 hours after CLP (n = 6/group). Survival was monitored following CLP-induced sepsis (n = 12/group). Results. LmiR-125b transfection significantly attenuated cardiac dysfunction due to CLP-induced sepsis. Fractional shortening and ejection fraction values were significantly (P <.05) higher in the LmiR-125b-treated CLP group than in the untreated CLP group. Survival outcome in LmiR-125b-transfected septic mice was markedly improved, compared with mice with CLP-induced sepsis. Transfection of LmiR-125b into the heart significantly suppressed the expression of ICAM-1 and VCAM-1, decreased the accumulation of macrophages and neutrophils in the myocardium, and decreased serum levels of tumor necrosis factor a and interleukin 1β by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6)-mediated nuclear factor κB (NF-κB) activation. In addition, sepsis-induced myocardial apoptosis was markedly attenuated by LmiR-125b transfection through suppression of p53, Bax, and Bak1 expression. In vitro transfection of endothelial cells with miR-125b mimics attenuate LPS-induced ICAM-1 and VCAM-1 expression by suppressing TRAF6 and NF-κB activation. Conclusions. Increased myocardial miR-125b expression attenuates sepsis-induced cardiac dysfunction and improves survival. miR-125b may be a target for septic cardiomyopathy.
2

MicroRNA-125bProtects Against Myocardial Ischaemia/Reperfusion Injury via Targeting p53-Mediated Apoptotic Signalling and TRAF6

Wang, Xiaohui, Ha, Tuanzhu, Zou, Jianghuan, Ren, Danyang, Liu, Li, Zhang, Xia, Kalbfleisch, John, Gao, Xiang, Williams, David, Li, Chuanfu 01 June 2014 (has links)
AimsThe present study examined the role of microRNA-125b (miR-125b) in myocardial ischaemia/reperfusion (I/R) injury. We constructed lentivirus-expressing miR-125b (LmiR-125b) and developed transgenic mice with overexpression of miR-125b.Methods and resultsLmiR-125b was transfected into mouse hearts through the right common carotid artery. Lentivirus vector (LmiR-Con) served as vector control. Untreated mice served as I/R control. Sham operation served as sham control. Seven days after transfection, the hearts were subjected to ischaemia (45 min) followed by reperfusion (4 h). Myocardial infarct size was analysed by 2,3,5-triphenyltetrazolium chloride staining. In separate experiments, hearts were subjected to ischaemia (45 min) followed by reperfusion for up to 7 days. Cardiac function was measured by echocardiography before, as well as 3 and 7 days after myocardial I/R. Increased expression of miR-125b significantly decreased I/R-induced myocardial infarct size by 60 and prevented I/R-induced decreases in ejection fraction (EF) and fractional shortening (FS). Transgenic mice with overexpression of miR-125b also showed the protection against myocardial I/R injury. Increased expression of miR-125b attenuated I/R-induced myocardial apoptosis and caspase-3/7 and-8 activities. Western blot showed that increased expression of miR-125b suppresses p53 and Bak1 expression in the myocardium. In addition, transfection of LmiR-125b decreased the levels of TNF receptor-associated factor 6 (TRAF6) and prevented I/R-induced NF-κB activation.ConclusionmiR-125 protects the myocardium from I/R injury by preventing p53-mediated apoptotic signalling and suppressing TRAF6-mediated NF-κB activation.
3

SR-A Deficiency Reduces Myocardial Ischemia/Reperfusion Injury; Involvement of Increased microRNA-125b Expression in Macrophages

Ren, Danyang, Wang, Xiaohui, Ha, Tuanzhu, Liu, Li, Kalbfleisch, John, Gao, Xiang, Williams, David, Li, Chuanfu 01 February 2013 (has links)
The macrophage scavenger receptor class A (SR-A) participates in the innate immune and inflammatory responses. This study examined the role of macrophage SR-A in myocardial ischemia/reperfusion (I/R) injury and hypoxia/reoxygenation (H/R)-induced cell damage. SR-A-/- and WT mice were subjected to ischemia (45min) followed by reperfusion for up to 7days. SR-A-/- mice showed smaller myocardial infarct size and better cardiac function than did WT I/R mice. SR-A deficiency attenuated I/R-induced myocardial apoptosis by preventing p53-mediated Bak-1 apoptotic signaling. The levels of microRNA-125b in SR-A-/- heart were significantly greater than in WT myocardium. SR-A is predominantly expressed on macrophages. To investigate the role of SR-A macrophages in H/R-induced injury, we isolated peritoneal macrophages from SR-A deficient (SR-A-/-) and wild type (WT) mice. Macrophages were subjected to hypoxia followed by reoxygenation. H/R markedly increased NF-κB binding activity as well as KC and MCP-1 production in WT macrophages but not in SR-A-/- macrophages. H/R induced caspase-3/7 and -8 activities and cell death in WT macrophages, but not in SR-A-/- macrophages. The levels of miR-125b in SR-A-/- macrophages were significantly higher than in WT macrophages. Transfection of WT macrophages with miR-125b mimics attenuated H/R-induced caspase-3/7 and -8 activities and H/R-decreased viability, and prevented H/R-increased p-53, Bak-1 and Bax expression. The data suggest that SR-A deficiency attenuates myocardial I/R injury by targeting p53-mediated apoptotic signaling. SR-A-/- macrophages contain high levels of miR-125b which may play a role in the protective effect of SR-A deficiency on myocardial I/R injury and H/R-induced cell damage.
4

SR-A Deficiency Reduces Myocardial Ischemia/Reperfusion Injury; Involvement of Increased microRNA-125b Expression in Macrophages

Ren, Danyang, Wang, Xiaohui, Ha, Tuanzhu, Liu, Li, Kalbfleisch, John, Gao, Xiang, Williams, David, Li, Chuanfu 01 February 2013 (has links)
The macrophage scavenger receptor class A (SR-A) participates in the innate immune and inflammatory responses. This study examined the role of macrophage SR-A in myocardial ischemia/reperfusion (I/R) injury and hypoxia/reoxygenation (H/R)-induced cell damage. SR-A-/- and WT mice were subjected to ischemia (45min) followed by reperfusion for up to 7days. SR-A-/- mice showed smaller myocardial infarct size and better cardiac function than did WT I/R mice. SR-A deficiency attenuated I/R-induced myocardial apoptosis by preventing p53-mediated Bak-1 apoptotic signaling. The levels of microRNA-125b in SR-A-/- heart were significantly greater than in WT myocardium. SR-A is predominantly expressed on macrophages. To investigate the role of SR-A macrophages in H/R-induced injury, we isolated peritoneal macrophages from SR-A deficient (SR-A-/-) and wild type (WT) mice. Macrophages were subjected to hypoxia followed by reoxygenation. H/R markedly increased NF-κB binding activity as well as KC and MCP-1 production in WT macrophages but not in SR-A-/- macrophages. H/R induced caspase-3/7 and -8 activities and cell death in WT macrophages, but not in SR-A-/- macrophages. The levels of miR-125b in SR-A-/- macrophages were significantly higher than in WT macrophages. Transfection of WT macrophages with miR-125b mimics attenuated H/R-induced caspase-3/7 and -8 activities and H/R-decreased viability, and prevented H/R-increased p-53, Bak-1 and Bax expression. The data suggest that SR-A deficiency attenuates myocardial I/R injury by targeting p53-mediated apoptotic signaling. SR-A-/- macrophages contain high levels of miR-125b which may play a role in the protective effect of SR-A deficiency on myocardial I/R injury and H/R-induced cell damage.

Page generated in 0.0259 seconds