• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tratamento AnaerÃbio e MicroaerÃbio de Ãguas SintÃticas Contaminadas com BTEX / Anaerobic And Microaerobic Treatment of Synthetic BTEX-Contaminated Waters.

Paulo Igor Milen Firmino 19 July 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / O presente estudo teve o objetivo de avaliar o uso de reatores biolÃgicos, sob condiÃÃes anaerÃbias e microaerÃbias, como opÃÃo de biorremediaÃÃo ex situ de Ãguas contaminadas com BTEX. Inicialmente, foi desenvolvido, otimizado e validado um mÃtodo analÃtico para a detecÃÃo e quantificaÃÃo de BTEX em Ãguas e efluentes, o qual consistia em extraÃÃo por headspace seguida de cromatografia gasosa com detecÃÃo por fotoionizaÃÃo. Posteriormente, foram conduzidos experimentos em fluxo contÃnuo em dois reatores anaerÃbios mesofÃlicos (27 ÂC) â um deles operado sob condiÃÃes metanogÃnicas e, em seguida, sob condiÃÃes microaerÃbias, e o outro, apenas sob condiÃÃes sulfetogÃnicas â a fim de verificar a melhor condiÃÃo operacional para a remoÃÃo de BTEX. Os reatores foram alimentados com Ãgua contaminada com BTEX (~3 mgÂL-1 de cada composto) e etanol (co-substrato), e, dependendo da condiÃÃo redox avaliada, investigou-se o efeito de diferentes parÃmetros operacionais, tais como tempo de detenÃÃo hidrÃulica (24, 36 e 48 h), recirculaÃÃo de efluente, concentraÃÃo de co-substrato, relaÃÃo DQO/SO4 2- e microaeraÃÃo, no desempenho de remoÃÃo de BTEX. AlÃm disso, o reator metanogÃnico sob condiÃÃes microaerÃbias foi submetido a simulaÃÃes de choques de carga e de ausÃncia desses compostos, e de falhas operacionais, como desligamento do sistema e desligamento da microaeraÃÃo, para verificaÃÃo de sua robustez. Sob condiÃÃes metanogÃnicas, dependendo do composto, as eficiÃncias de remoÃÃo variaram de 38 a 97%. PorÃm, o aumento da carga aplicada de BTEX, em consequÃncia da reduÃÃo do tempo de detenÃÃo hidrÃulica de 48 para 24 h, parece ter afetado negativamente o processo de remoÃÃo. Ainda sob condiÃÃes metanogÃnicas, tambÃm se verificou o efeito da recirculaÃÃo de efluente na remoÃÃo de BTEX para altas e baixas concentraÃÃes de co-substrato (etanol). Quando altas concentraÃÃes de etanol foram utilizadas, o impacto da recirculaÃÃo de efluente nÃo foi evidente, jà que, provavelmente, a elevada produÃÃo de biogÃs teria sido suficiente para garantir uma transferÃncia de massa efetiva. Sob condiÃÃes sulfetogÃnicas, a adiÃÃo de sulfato em diversas relaÃÃes DQO/SO4 2- nÃo alterou a remoÃÃo de BTEX, sugerindo que as bactÃrias redutoras de sulfato nÃo estariam diretamente relacionadas à ativaÃÃo inicial dos compostos aromÃticos. Sob condiÃÃes microaerÃbias, elevadas eficiÃncias de remoÃÃo de BTEX foram alcanÃadas (> 90%). à provÃvel que a adiÃÃo de baixas concentraÃÃes de oxigÃnio tenha facilitado a ativaÃÃo inicial dos compostos BTEX, a qual à considerada a etapa limitante do processo de degradaÃÃo anaerÃbia, principalmente para o benzeno. Ainda, constatou-se que a presenÃa de altas concentraÃÃes de etanol afetou negativamente a remoÃÃo de BTEX, notadamente para o benzeno, sob as diferentes condiÃÃes redox testadas, jà que à um substrato preferencialmente degradÃvel em relaÃÃo aos compostos aromÃticos. Finalmente, com relaÃÃo à robustez do reator metanogÃnico sob condiÃÃes microaerÃbias, o sistema conseguiu lidar com os choques de carga de BTEX embora choques consecutivos tenham aumentado seu tempo de recuperaÃÃo. O perÃodo de ausÃncia de BTEX parece ter prejudicado a microbiota do reator, pois a qualidade do efluente deteriorou-se consideravelmente apÃs reintroduÃÃo dos compostos. O desligamento da microaeraÃÃo impactou negativamente a remoÃÃo de BTEX, mas o sistema recuperou-se rapidamente apÃs restabelecimento das condiÃÃes microaerÃbias. / The present study aimed to evaluate the use of biological reactors under anaerobic and microaerobic conditions, as an option of ex situ bioremediation of BTEX-contaminated waters. Initially, an analytical method for BTEX detection and quantification in waters and wastewaters, which consisted of headspace extraction followed by gas chromatography with detection by photoionization, was developed, optimized and validated. Subsequently, continuous-flow experiments were conducted in two mesophilic (27 ÂC) anaerobic reactors â one of them operated under methanogenic conditions and, afterwards, under microaerobic conditions, and the other one only under sulfidogenic conditions â a in order to determine the best operational condition for BTEX removal. The reactors were fed with water contaminated with BTEX (~3 mgÂL-1 of each compound) and ethanol (co-substrate), and, depending on the redox condition evaluated, the effect of some operational parameters, such as hydraulic retention time (24, 36 and 48 h), effluent recirculation, co-substrate concentration, DQO/SO4 2- ratio and microaeration, was investigated in BTEX removal performance. Furthermore, the methanogenic reactor under microaerobic conditions was submitted to simulated situations of shock loading and absence of these compounds, and operational failures, such as system and microaeration shutdown to assess its robustness. Under methanogenic conditions, depending on the compound, removal efficiencies ranged from 38 to 97%. However, the increase of applied BTEX load, as a consequence of hydraulic detention time reduction from 48 to 24 h, seems to have adversely affected the removal process. Moreover, under methanogenic conditions, the effluent recirculation effect on BTEX removal was also assessed when high and low co-substrate (ethanol) concentrations were applied. For high ethanol concentrations, the impact of effluent recirculation was not evident since, probably, the high biogas production would have been sufficient to ensure effective mass transfer. Under sulfidogenic conditions, sulfate addition at different DQO/SO4 2- ratios did not change BTEX removal, which suggests sulfate-reducing bacteria would not be directly related to initial activation of aromatic compounds. Under microaerobic conditions, high BTEX removal efficiencies were achieved (> 90%). It is likely the addition of low oxygen concentrations has facilitated the initial activation of BTEX compounds, which is considered the limiting step of the anaerobic degradation process, mainly for benzene. Furthermore, the presence of high ethanol concentrations negatively affected BTEX removal, particularly for benzene, under the different redox conditions tested, since it is a preferentially degradable substrate when compared to the aromatic compounds. Finally, regarding the methanogenic reactor robustness under microaerobic conditions, the system could cope with BTEX load shocks although consecutive shocks have increased its recovery time. The period of BTEX absence seems to have negatively affected the reactor microbiota because the effluent quality deteriorated considerably after compounds reintroduction. The microaeration shutdown also negatively impacted the removal of BTEX, but the system recovered quickly after microaerobic conditions reestablishment.

Page generated in 0.0861 seconds