51 |
Microalgae as the Third Generation Biofuel:Production, Usage, Challenges and ProspectsWang, Yue January 2013 (has links)
Microalgae refer to a kind of autotrophic microorganism with rich nutrition and high photosynthetic utilization degree, which are widely living in the sea and land. Microalgae can be converted into bio energy such as biogas, biodiesel and bio oil. This thesis presents a review on the different cultivation methods and energy conversion techniques of microalgae. Through comparison with other biomass feedstocks, the advantages and disadvantages of microalgae are detailed. Since the large scale of microalgae bioenergy production has not been achieved yet, the commercial production requirements and the sustainability of microalgae are analysed. As a result, high lipid content, less cultivated land use and short life time circle are thought to be the typical advantages of microalgae that it can be considered as a potential substitute of fossil fuel.
|
52 |
DEVELOPMENT OF A RAPID IN SITU TRANSESTERIFICATION METHOD FOR FATTY ACID ANALYSIS IN MICROALGAEHall, Julie 20 April 2012 (has links)
The FAME yield from microalgae of two in situ transesterification methods were compared to a typical Folch et al. (1957) extraction followed by transesterification using the Hilditch et al. (1964) procedure. A method based on Park & Goins (1994), utilizing 0.5 N NaOH in methanol, then 14 % BCl3 in methanol, was found to be superior to a method based on Lepage & Roy (1986), utilizing acetyl chloride in methanol. The Park & Goins (1994) method was equivalent to the traditional method and was, therefore, selected for further study. In establishing the parameters of the method, water contents up to 0.55 mL were not found to inhibit the reaction within the maximum lipid load, conservatively assessed at ~1 mg. The reaction time and temperature required to produce a maximum FAME yield was 10 min at 90 °C for the BCl3-catalyzed reaction, while the NaOH-catalyzed reaction happened instantaneously at ambient temperature.
|
53 |
Rapid toxicity assessment using esterase enzyme activity of several microalgal speciesMitchell, Joy Lynn 08 1900 (has links)
No description available.
|
54 |
Investigating the biochemical, molecular and ecological bases of algal halogenation through the purification and analysis of a putative heme-dependent bromoperoxidase enzyme from the marine macroalga Enteromorpha linzaMorris, Jonathan Hugh January 2000 (has links)
No description available.
|
55 |
The Recovery of Two Polluted Subarctic Lakes—Towards Nutrient Management or a Pristine State?Grönlund, Erik January 2012 (has links)
Two small subarctic lakes were eutrophicated due to wastewater discharge from 1964. In 1975, a wastewater treatment plant was built and a recovery process started. This paper will: (1) compile the 1972–1974, 1978–1980 and 1985–1988 investigation data regarding phosphorous and microalgae for one of the lakes; (2) complement with unpublished data from 1985 and 2003; and (3) introduce a discussion regarding three alternatives for future development of the lakes in their last phase of recovery. In the latest investigation, 2003, the lakes were assessed as almost recovered. They had returned to an oligotrophic state, but not fully to a pre-sewage situation. In the upper lake, more heavily polluted, the total phosphorous levels had decreased from an average of 168 µg P/L in 1972–1974 to an average of 12 µg P/L in 2003. The phytoplankton biomass had decreased twentyfold during the same period, from 11.2 mg/L to 0.6 mg/L. The Secchi depth had increased from 1.3 m to 2.8 m. The low oxygen level in late winter was still not recovered, thereby profoundly affecting residential organisms in the lakes. The low winter oxygen is assumed to remain so for a long time due to phosphorus release from sediments in the lakes.
|
56 |
The regulation of Saxitoxin production in CyanobacteriaCavaliere, Rosalia, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Aquatic microalgae produce a variety of toxic secondary metabolites, which are a concern for public health and seafood industries, while also presenting a source of pharmacologically valuable compounds. The present study deals with the physiology and molecular genetics of saxitoxin (STX), a cyanobacterial neurotoxic alkaloid. Ecological and chemical parameters have been investigated for their effects on growth and STX production in the cyanobacterium Cylindrospermopsis raciborskii T3, in order to better understand the physiological responses of this cyanobacterium to the anthropogenic eutrophication of water bodies. The results indicated that phosphate, in particular, had an incremental effect on STX production, as well as promoting the up-regulation of transcription of the STX biosynthetic gene cluster (sxt). High temperature was found to negatively affect growth and STX production in this organism. The effects of the plant hormone, jasmonic acid, were also tested, since it has previously been shown to affect plant alkaloid production. The hypothesised similarity between cyanobacterial and plant secondary metabolism in response to this plant hormone was confirmed in the neurotoxic cyanobacterium, C. raciborskii T3, as well as the non-toxic Anabaena sp. PCC7120. Furthermore, investigation of the sxt gene cluster transcriptional map in C. raciborskii T3 was carried out, with identification of three main polycistronic and one monocistronic transcripts. Promoter regions putatively involved in the regulation of STX production in C. raciborskii T3 were also identified. Transcription factor consensus motifs, the pho boxes, were identified in the main promoter region. These conserved motifs are the binding regions for the transcriptional regulator, PhoB, to the pho regulon genes, involved in phosphate uptake during conditions of its depletion in the environment. Moreover, a genomic region adjacent to the sxt gene cluster in C. raciborskii T3 was identified and characterised, putatively encoding a regulatory two-component system. This system appears to be involved in the sensing of environmental signals, in particular depleted phosphate, while activating the transcription of genes involved in its uptake and transport. The results of this study lead to a greater understanding of the complex factors associated with the regulation of STX biosynthesis and bloom-formation, by the cyanobacterium C. raciborskii T3.
|
57 |
The regulation of Saxitoxin production in CyanobacteriaCavaliere, Rosalia, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Aquatic microalgae produce a variety of toxic secondary metabolites, which are a concern for public health and seafood industries, while also presenting a source of pharmacologically valuable compounds. The present study deals with the physiology and molecular genetics of saxitoxin (STX), a cyanobacterial neurotoxic alkaloid. Ecological and chemical parameters have been investigated for their effects on growth and STX production in the cyanobacterium Cylindrospermopsis raciborskii T3, in order to better understand the physiological responses of this cyanobacterium to the anthropogenic eutrophication of water bodies. The results indicated that phosphate, in particular, had an incremental effect on STX production, as well as promoting the up-regulation of transcription of the STX biosynthetic gene cluster (sxt). High temperature was found to negatively affect growth and STX production in this organism. The effects of the plant hormone, jasmonic acid, were also tested, since it has previously been shown to affect plant alkaloid production. The hypothesised similarity between cyanobacterial and plant secondary metabolism in response to this plant hormone was confirmed in the neurotoxic cyanobacterium, C. raciborskii T3, as well as the non-toxic Anabaena sp. PCC7120. Furthermore, investigation of the sxt gene cluster transcriptional map in C. raciborskii T3 was carried out, with identification of three main polycistronic and one monocistronic transcripts. Promoter regions putatively involved in the regulation of STX production in C. raciborskii T3 were also identified. Transcription factor consensus motifs, the pho boxes, were identified in the main promoter region. These conserved motifs are the binding regions for the transcriptional regulator, PhoB, to the pho regulon genes, involved in phosphate uptake during conditions of its depletion in the environment. Moreover, a genomic region adjacent to the sxt gene cluster in C. raciborskii T3 was identified and characterised, putatively encoding a regulatory two-component system. This system appears to be involved in the sensing of environmental signals, in particular depleted phosphate, while activating the transcription of genes involved in its uptake and transport. The results of this study lead to a greater understanding of the complex factors associated with the regulation of STX biosynthesis and bloom-formation, by the cyanobacterium C. raciborskii T3.
|
58 |
Lipid and fatty acid composition and their biosyntheses in relation to carotenoid accumulation in the microalgae nitzschia laevis (Bacillariophyceae) and haematococcus pluvialis (chlorophyceae)Chen, Guanqun. January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Also available in print.
|
59 |
Antagonism of Bacillus spp. towards Microcyctis aeruginosaGumbo, Jabulani Ray. January 2006 (has links)
Thesis (PhD Microbiology and Plant Pathology(Water resource management))-University of Pretoria, 2006. / Summary in English. Includes bibliographical references. Available on the Internet via the World Wide Web.
|
60 |
Benthic-pelagic nutrient cycling in shallow lakes : investigating the functional role of benthic microalgae /Spears, Bryan Millar. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, September 2007.
|
Page generated in 0.0514 seconds