• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and optimization of technology for the extraction and conversion of micro algal lipids to biodiesel

Ramluckan, Krishan January 2015 (has links)
Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry, Durban University of Technology, Durban, South Africa, 2015. / Fossil fuel reserves have been diminishing worldwide thus making them very scarce in the long term. These fuel sources and their by-products which are used commercially tend to produce large quantities of emissions. Some of them are believed to be toxic to flora and fauna. It is primarily for this reason that researchers worldwide have begun to seek out alternative sources of environmentally safe fuel. Biodiesel from algae is one of these sources that have been examined over the last few decades. Biodiesel has been produced from other plant-based material and waste oils in countries like America and Japan. However, the use of food based crops for biodiesel production has been challenged as it has an impact on food production on an international scale. Algae have only recently been investigated for their feasibility for biodiesel production on a large scale. The aim of this study was to investigate and develop technologies for biodiesel production from algae. The species of algae chosen were chlorella sp and scenedesmus sp., since they are indigeneous to Kwazulu Natal in South Africa. Samples were obtained from a local raceway pond and prepared for analysis. Drying protocols used freeze, oven and sun drying for initial preparation of the samples for analysis. Sun drying was the least energy intensive but most time consuming. At laboratory scale, oven drying was chosen as the best alternative. Lipid extraction methods investigated were the separating funnel method, the soxhlet method, microwave assisted extraction (MAE) and the expeller press. Thirteen solvents covering a range of polarities were used with the extraction methods to determine the efficiency of the solvent with these methods. Optimization of the MAE method was conducted using both the one factor at a time (OFAT) method and a design of experiment (DOE) statistical method. The shelf life of algal biomass was determined by ageing the samples for approximately three months. Direct and in-situ transesterification of lipid extracts to produce biodiesel was investigated using both acid and base catalysis. Qualitative and quantitative analyses were conducted using Fourier transform infra-red (FTIR) and gas chromatography (GC). Chemical and physical characterization of the biodiesel produced from the algal lipid extracts were compared to both local and international standard specifications for biodiesel. In terms of extraction efficiency, it was found that soxhlet and microwave assisted extraction methods were almost equally good. This was proved by the MAE method yielding an average of 10.0% lipids for chloroform, ethanol and hexane after 30 mL of solvent was used in an extraction time of 10 minutes, while the soxhlet method yielded 10.36% lipids using an extraction volume of 100 mL of solvent with an extraction time of 3 hours. Chloroform, ethanol and hexane were more efficient than the other ten solvents used. This was shown by these three solvents producing lipid quantities between 10% to 11% while all the other solvents produced lipid quantities between 2 and 10 %. The best extraction efficiency was achieved by the binary solvent mixture made up of chloroform and ethanol in a 1:1 ratio. Under the conditions optimized, this solvent ratio yielded a lipid content of 11.76%. The methods chosen and optimized for extraction are very efficient, but the actual cost of production of biodiesel need to be determined. Physical methods like the expeller press are not feasible for extraction of the type of biomass produced unless algae are pelletized to improve extraction. This will impact on the cost of producing biodiesel. The transesterification protocols investigated show that the base catalysis produced biodiesel with a ratio of saturates to unsaturates conducive to a good fuel product. The direct esterification method in this study proved to be better than the in-situ method for biodiesel production. The in-situ method was also more labour intensive. Chromatography was found to be a fast and efficient method for qualitative and quantitative determination of biodiesel. Characterization tests showed that the quality of biodiesel produced was satisfactory. It also showed that the methods used in this study were feasible for the satisfactory production of biodiesel which meets local and international specifications.
12

Co-utilisation of microalgae for wastewater treatment and the production of animal feed supplements

Johnson, Hailey E January 2011 (has links)
Microalgae have a variety of commercial applications, the oldest of which include utilisation as a food source and for use in wastewater treatment. These applications, however, are seldom combined due to toxicity concerns, for ethical reasons, and generally the requirement for cultivation of a single algae species for use as a feed supplement. These problems might be negated if a “safer” wastewater such as that from agricultural and/or commercial food production facilities were to be utilised and if a stable algae population can be maintained. In this investigation preliminary studies were carried out using an Integrated Algae Pond System (IAPS) for domestic wastewater treatment to determine the species composition in the associated High Rate Algae Ponds (HRAPs). The effect of different modes of operation, continuous versus batch, on nutrient removal, productivity and species composition was also investigated. Furthermore, indigenous species in the HRAP were isolated and molecularly identified as, Chlorella, Micractinium, Scenedesmus and Pediastrum. Additionally, the effect of the nor amino acid, 2-hydroxy-4-(methylthio)-butanoic acid (HMTBA) and its Cu-chelated derivative, on the growth and biochemical composition of Chlorella, Micractinium, Scenedesmus, Pediastrum and Spirulina was investigated. Species composition in the HRAP was stable under continuous operation with Micractinium dominating > 90% of the algae population. Under batch operation the population dynamic shifted; Chlorella outcompeted Micractinium possibly due to nutrient depletion and selective grazing pressures caused by proliferation of Daphnia. Higher species diversity was observed during batch mode as slower growing algae were able to establish in the HRAP. Nutrient removal efficiency and biomass productivity was higher in continuous mode, however lower nutrient levels were obtained in batch operation. HMTBA did not significantly affect growth rate, however treatment with 10 mg.L-1 resulted in slightly increased growth rate in Micractinium and increased final biomass concentrations in Chlorella, Micractinium and Spirulina (although this was not statistically significant for Micractinium and Spirulina), which are known mixotrophic species. Algae treated with Cu-HMTBA, showed reduced final biomass concentration with 10 mg.L-1, caused by Cu toxicity. Biochemical composition of the algae was species-specific and differed through the growth cycle, with high protein observed during early growth and high carbohydrate during late growth/early stationary phase. Additionally, 0.1 mg.L-1 HMTBA and Cu-HMTBA significantly reduced protein content in Chlorella, Micractinium, Scenedesmus and Pediastrum. In conclusion, operation of the HRAP in continuous culture provided suitable wastewater treatment with high productivity of an ideal species, Micractinium, for use in animal feed supplementation. This species had 40% protein content during growth (higher than the other species tested) and dominated the HRAP at > 90% of the algae population during continuous mode. Addition of HMTBA (> 1 mg.L-1) to algae cultivation systems and those treating wastewater, has the potential to improve productivity and the value of the biomass by enhancing protein content. Overall, the co-utilisation of microalgae for wastewater treatment and the generation of a biomass rich in protein, for incorporation into formulated animal feed supplements, represents a closed ecosystem which conserves nutrients and regenerates a most valuable resource, water.

Page generated in 0.0585 seconds