• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrochemical Aspects of Miniaturized Analytical Platforms

Klett, Oliver January 2003 (has links)
<p>This thesis ties some electrochemical aspects of development and fabrication of an analytical system on a microchip together. These aspects develop through the fundamentals of amperometric detection in microsystems and microfabrication via the interaction of electrochemical detection and electrophoretic separation finally to the interfacing of a microsystem to the macro world.</p><p>Paper <b>I</b> deals with amperometric detection in microscale systems and describes the fabrication of the necessary on-chip microelectrodes together with fluidic channels in silicon. It was furthermore studied, if the interelectrode distance of some μm could be used to improve the sensitivity in amperometric detection by employing redox cycling. </p><p>Papers <b>II</b>, <b>III</b> and <b>IV</b> deal with the effect of a high voltage field on amperometric detection. In analytical microdevices typically an electrophoretic separation step (e.g. capillary electrophoresis, CE) precedes the detection. The interference of the CE high voltage with the amperometric detection potential is often considered one of the main hindrances for an effective combination of these techniques. In paper <b>II</b> one reason for the observed disturbing potential shift was elucidated. It was shown that positioning of working electrode and reference electrode on an equipotiental surface eliminates this problem. Paper <b>III</b> reports an application of this technique. In paper <b>IV</b> it could be shown that this approach could further be used to significantly reduce the instrumental requirements for amperometric detection in CE.</p><p>Papers <b>V</b>, <b>VI</b>, <b>VII</b>, finally discuss the interfacing of low volumetric flows that typically occur on microanalytical devices to other techniques. Both, interfacing from liquid to liquid phase (μLC to CE in paper <b>V</b>) and from liquid to gas phase (CE to MS in paper <b>VI</b> and <b>VII</b>) were discussed. Electrochemical methods are used in this context to evaluate the stability and, in paper <b>VI</b> and <b>VII</b>, to increase the understanding of underlying processes of corrosion.</p>
2

Electrochemical Aspects of Miniaturized Analytical Platforms

Klett, Oliver January 2003 (has links)
This thesis ties some electrochemical aspects of development and fabrication of an analytical system on a microchip together. These aspects develop through the fundamentals of amperometric detection in microsystems and microfabrication via the interaction of electrochemical detection and electrophoretic separation finally to the interfacing of a microsystem to the macro world. Paper I deals with amperometric detection in microscale systems and describes the fabrication of the necessary on-chip microelectrodes together with fluidic channels in silicon. It was furthermore studied, if the interelectrode distance of some μm could be used to improve the sensitivity in amperometric detection by employing redox cycling. Papers II, III and IV deal with the effect of a high voltage field on amperometric detection. In analytical microdevices typically an electrophoretic separation step (e.g. capillary electrophoresis, CE) precedes the detection. The interference of the CE high voltage with the amperometric detection potential is often considered one of the main hindrances for an effective combination of these techniques. In paper II one reason for the observed disturbing potential shift was elucidated. It was shown that positioning of working electrode and reference electrode on an equipotiental surface eliminates this problem. Paper III reports an application of this technique. In paper IV it could be shown that this approach could further be used to significantly reduce the instrumental requirements for amperometric detection in CE. Papers V, VI, VII, finally discuss the interfacing of low volumetric flows that typically occur on microanalytical devices to other techniques. Both, interfacing from liquid to liquid phase (μLC to CE in paper V) and from liquid to gas phase (CE to MS in paper VI and VII) were discussed. Electrochemical methods are used in this context to evaluate the stability and, in paper VI and VII, to increase the understanding of underlying processes of corrosion.
3

Fluorine Partitioning Between Nominally Anhydrous Minerals (Olivine, Clinopyroxene, and Plagioclase) and Silicate Melt using Secondary Ion Mass Spectrometry and Newly Synthesized Basaltic Fluorine Microanalytical Glass Standards

January 2012 (has links)
abstract: Fluorine (F) is a volatile constituent of magmas and hydrous mantle minerals. Compared to other volatile species, F is highly soluble in silicate melts, allowing F to remain in the melt during magma differentiation and rendering F less subject to disturbance during degassing upon magma ascent. Hence, the association between fluorine in basalts and fluorine in the mantle source region is more robust than for other volatile species. The ionic radius of F- is similar to that of OH- and O2-, and F may substitute for hydroxyl and oxygen in silicate minerals and melt. Fluorine is also incorporated at trace levels within nominally anhydrous minerals (NAMs) such as olivine, clinopyroxene, and plagioclase. Investigating the geochemical behavior of F in NAMs provides a means to estimate the pre-eruptive F contents of degassed magmas and to better understand the degassing behavior of H. The partition coefficients of F were determined for clinopyroxene, olivine, plagioclase, and hornblende within melts of olivine-minette, augite-minette, basaltic andesite, and latite compositions. The samples analyzed were run products from previously-published phase-equilibria experiments. Fluorine was measured by secondary ion mass spectrometry (SIMS) using an 16O- primary beam and detection of negative secondary ions (19F-, 18O-, 28Si-). SIMS ion intensities are converted to concentrations by analyzing matrix-matched microanalytical reference materials and constructing calibration curves. For robust F calibration standards, five basaltic glasses (termed Fba glasses) were synthesized in-house using a natural tholeiite mixed with variable amounts of CaF2. The Fba glasses were characterized for F content and homogeneity, using both SIMS and electron-probe microanalysis (EPMA), and used as F standards. The partition coefficients for clinopyroxene (0.04-028) and olivine (0.01-0.16) varied with melt composition such that DF (olivine-minette) < DF (augite-minette) < DF (basaltic andesite) < DF (latite). Crystal chemical controls were found to influence the incorporation of F into clinopyroxene, but none were found that affected olivine. Fluorine partitioning was compared with that of OH within clinopyroxenes, and the alumina content of clinopyroxene was shown to be a strong influence on the incorporation of both anions. Fluorine substitution into both olivine and clinopyroxene was found to be strongly controlled by melt viscosity and degree of melt polymerization. / Dissertation/Thesis / Ph.D. Geological Sciences 2012
4

[en] ARCHAEOMETALLURGY STUDY OF METALLIC ARTIFACTS RECOVERED FROM HISTORICALS SITES IN RIO DE JANEIRO / [pt] ESTUDO ARQUEOMETALÚRGICO DE OBJETOS METÁLICOS RESGATADOS DE SÍTIOS HISTÓRICOS DO RIO DE JANEIRO

GUADALUPE DO NASCIMENTO CAMPOS 03 March 2006 (has links)
[pt] Este trabalho tem como objetivo efetuar um estudo arqueometalúrgico de objetos ferrosos e não-ferrosos resgatados de sítios históricos do Rio de janeiro. A pesquisa experimental desenvolveu uma metodologia de análise utilizando-se de técnicas destrutivas como Microscopia Ótica (MO), Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão e não destrutivas como Fluorescência de Raio X (FRX) e Emissão de Raios-X por Indução de Partículas (PIXE). Os objetos foram analisados com o intuito de caracterizar sua composição, estrutura e método de elaboração. Estes correspondem a seis artefatos de natureza metálica não-ferrosa e um de natureza metálica ferrosa. O objeto metálico ferroso corresponde a uma enxada. As características microestruturais dos objetos estão correlacionadas com a função que esses desempenhavam na época e indicativa de que a enxada possa ter sido feita no Brasil por escravos africanos. A análise da enxada permite concluir que é constituída de um ferro pudlado e que foi processada por fundição e forjamento. Quanto aos objetos não-ferrosos, o rosário é constituído de um latão monofásico mais rico em cobre. Com relação à fabricação do rosário pode-se concluir de que seja de origem européia, sendo decorrente de um minério pirítico. As medalhas são de procedência européia constituídas de latão. Historicamente, pode-se deduzir que são referentes ao século XVIII. Conclui-se que as duas moedas do Sítio Rochedo sejam originárias de fontes diferentes, constatado pelas análises químicas. Porém, as concentrações químicas da moeda de 1821 são próximas a uma das moedas de 40 réis. A presente tese permitiu evidenciar a importância da sistemática de trabalho experimental de caracterização, a partir de técnicas destrutivas e nãodestrutivas de materiais, de objetos arqueológicos para estabelecer seu contexto histórico. / [en] This work undertakes an archeometallurgical study of ferrous and non-ferrous artifacts recovered from historical sites of Rio de Janeiro. The experimental research developed an analytical methodology based on destructive techniques, such as Optical Microscopy (OM), Scanning Electronic Microscopy (SEM) and Transmission Electronic Microscopy (TEM); as well as non- destructive techniques, namely X-Ray Fluorescence (XRF) and Particle Induction X-Ray Emission (PIXE). These artifacts were analyzed in order to characterize their composition, structure and elaboration/processing methods. There are six artifacts with a non-ferrous metallic nature and one with a ferrous metallic nature. The ferrous metallic artifact was a hoe. The microstructure characteristics is related to the usage of this object at that time, and indicates that the hoe could have been made in Brazil by African slaves. The analysis of the hoe indicates that it was elaborated from puddle iron and that it had been processed by foundry and forging. The rosary, one of the non-ferrous artifacts, is formed by singlephase brass riche in copper; and according to historical research it is of European origin, deriving from pyrite ore. The medals are also of European origin and are based on brass. Historically one can deduce that they are dated from the 18th century. The two coins from the Rochedo site most probably came from distinct sources, as validated by the chemical analysis. However, the chemical composition of the 1821 coin is close to that of the 40 réis coin. The present thesis has shown the importance of a systematic methodology to characterize ancient objects combining both destructive and non- destructive techniques.

Page generated in 0.0534 seconds