• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 40
  • 40
  • 40
  • 40
  • 19
  • 14
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of coincidence ion mass spectrometry for chemical and structural analysis at the sub-micron scale

Balderas, Sara 01 November 2005 (has links)
Surfaces can be probed with a variant of secondary ion mass spectrometry (SIMS) where the bombardment is with a sequence of single keV projectiles, each resolved in time and space, coupled with the separate record of the secondary ions (SIs) ejected from each projectile impact. The goal of this study was to demonstrate an efficient mode of SIMS where one obtains valid analytical information with a minimum of projectiles and hence a minimum of sample consumption. An inspection of the ejected SIs from individual bombardment events will reveal ??super efficient?? collision cascades i.e., events, where two or more secondary ions were emitted simultaneously. It has been shown that these coincidental emissions can provide information about the chemical composition of nano-domains. Previous studies using coincidence counting mass spectrometry (CCMS) indicated an enhancement of identifying correlations between SIs which share a common origin. This variant of SIMS requires an individual projectile impact thus causing SI emission from a surface area of ~5 nm in radius. Thus, in an event where two or moreSIs are ejected from a single projectile impact, they must originate from atoms and molecules co-located within the same nano-domain. Au nanorods covered by a 16-mercaptohexadecanoic acid (MHDA) monolayer were analyzed using this methodology. A coincidence ion mass spectrum was obtained for the MHDA monolayer covered Au nanorods which yielded a peak for a Au adduct. Similar results were obtained for a sample with a MHDA monolayer on a Au coated Si wafer. A series of samples consisting of Cu aggregates and AuCu alloys were investigated by SIMS to demonstrate that this technique is appropriate for characterizing nanoparticles. The mass spectra of these samples indicated that Au200 4+ is an effective projectile to investigate the surface of the target because it was able to penetrate through the poly(vinylpyrrolidone) (PVP) stabilizer that coated the surface of these nanoparticles. Coincidence mass spectra of the Cu aggregates yielded molecules colocated within the same nano-domain. Finally, this methodology was used to investigate surface structural effects on the occurrence of ??super-efficient?? events. The results indicated that it is possible to distinguish between two phases of ??-ZrP compounds although the stoichiometry remains the same.
2

Rigorous analytical applications of liquid secondary ion mass spectrometry/mass spectrometry

Lemire, Sharon Warford 05 1900 (has links)
No description available.
3

Characterization of Individual Nanoparticles and Applications of Nanoparticles in Mass Spectrometry

Rajagopal Achary, Sidhartha Raja 2010 May 1900 (has links)
The chemical characterization of individual nanoparticles (NPs) </= 100 nm in diameter is one of the current frontiers in analytical chemistry. We present here, a methodology for the characterization of individual NPs by obtaining molecular information from single massive cluster impacts. The clusters used in this secondary ion mass spectrometry (SIMS) technique are Au4004+ and C60+. The ionized ejecta from each impact are recorded individually which allows to identify ions emitted from a surface volume of ~10 nm in diameter and 5-10 nm in depth. The mode of analyzing ejecta individually from each single cluster impact gives insight into surface homogeneity, in our case NPs and their immediate surroundings. We show that when the NPs (50 nm Al) are larger than the size of the volume perturbed by the projectile, the secondary ion emission (SI) resembles that of a bulk surface. However, when the NP (5 nm Ag) is of the size range of the volume perturbed by projectile the SI emission is different from that of a bulk surface. As part of this sub-assay volume study, the influence of neighboring NP on the SI emission was examined by using a mixture of different types of NPs (5 nm Au and 5 nm Ag). The methodology of using cluster SIMS via a sequence of stochastic single impacts yield information on the surface coverage of the NPs, as well as the influence of the chemical environment on the type of SI emission. We also present a case of soft landing NPs for laser desorption ionization mass spectrometry. NPs enhance the SI emission in a manner that maintains the integrity of the spatial distribution of molecular species. The results indicate that the application can be extended to imaging mass spectrometry.
4

A Fundamental Study on the Relocation, Uptake, and Distribution of the Cs⁺ Primary Ion Beam During the Secondary Ion Mass Spectrometry Analysis

Giordani, Andrew J. 01 April 2016 (has links)
Combining cesium (Cs) bombardment with positive secondary molecular ion detection (MCs+) can extend the analysis capability of Secondary Ion Mass Spectrometry (SIMS) from the dilute limit (<1%) to matrix elements. The MCs+ technique has had great success in quantifying the sample composition of III-V semiconductors as well as dopants and/or impurities; however, it has been less effective at reducing the matrix effect for IV compounds, particularly Si-containing compounds, due to Cs overloading at the surface during the analysis from the Cs primary ion beam. The Cs overloading issue is attributable to the mobility and relocation of the implanted Cs to the surface; this effect happens almost instantaneously. Once the surface is overloaded with Cs, the excess Cs begins to reneutralize the ionization Cs and, as a result, the MCs+ technique is ineffective at reducing the matrix effect. This research provides new insights for improving the MCs+ technique and elucidating the Cs mobility. A combination of multiple experimental techniques and theoretical modeling was implemented to assess the Cs retention, up-take, and distribution differences between group III-V and IV materials. Early experiments revealed a temperature-dependent component of the Cs mobility, prompting an investigation of this phenomenon. Therefore, we designed, built, and installed a variable temperature stage for our SIMS with temperatures ranging from -150 to 300 C. This enabled us to study the temperature-dependent component of the Cs mobility and the effect it has on the secondary ion emission processes. Additionally, a method was devised to quantify the amount of neutralization and ionization due to the relocated Cs. The results allow for a more thorough understanding of the material dependence on the Cs+-sample interaction and the temperature component of the Cs mobility. / Ph. D.
5

An AFM-SIMS Nano Tomography Acquisition System

Swinford, Richard William 16 March 2017 (has links)
An instrument, adding the capability to measure 3D volumetric chemical composition, has been constructed by me as a member of the Sánchez Nano Laboratory. The laboratory's in situ atomic force microscope (AFM) and secondary ion mass spectrometry systems (SIMS) are functional and integrated as one instrument. The SIMS utilizes a Ga focused ion beam (FIB) combined with a quadrupole mass analyzer. The AFM is comprised of a 6-axis stage, three coarse axes and three fine. The coarse stage is used for placing the AFM tip anywhere inside a (13x13x5 mm3) (xyz) volume. Thus the tip can be moved in and out of the FIB processing region with ease. The planned range for the Z-axis piezo was 60 µm, but was reduced after it was damaged from arc events. The repaired Z-axis piezo is now operated at a smaller nominal range of 18 µm (16.7 µm after pre-loading), still quite respectable for an AFM. The noise floor of the AFM is approximately 0.4 nm Rq. The voxel size for the combined instrument is targeted at 50 nm or larger. Thus 0.4 nm of xyz uncertainty is acceptable. The instrument has been used for analyzing samples using FIB beam currents of 250 pA and 5.75 nA. Coarse tip approaches can take a long time so an abbreviated technique is employed. Because of the relatively long thro of the Z piezo, the tip can be disengaged by deactivating the servo PID. Once disengaged, it can be moved laterally out of the way of the FIB-SIMS using the coarse stage. This instrument has been used to acquire volumetric data on AlTiC using AFM tip diameters of 18.9 nm and 30.6 nm. Acquisition times are very long, requiring multiple days to acquire a 50-image stack. New features to be added include auto stigmation, auto beam shift, more software automation, etc. Longer term upgrades to include a new lower voltage Z-piezo with strain-gauge feedback and a new design to extend the life for the coarse XY nano-positioners. This AFM-SIMS instrument, as constructed, has proven to be a great proof of concept vehicle. In the future it will be used to analyze micro fossils and it will also be used as a part of an intensive teaching curriculum.
6

Mass spectrometric studies on glycoprotein oligosaccharides : a modified procedure for the liquid secondary ion mass spectrometric analysis of glycoprotein oligosaccharides. Studies on the nature of glycosylation on baculovirus-expressed mouse interleukin-3

Hogeland, Kenneth Eden 23 April 1993 (has links)
Graduation date: 1993
7

Ion pairing of nucleotides with surfactants for enhanced sensitivity in liquid matrix assisted secondary ion mass spectrometry

Pavlovich, James Gilbert 18 March 1993 (has links)
In particle induced desorption-ionization mass spectrometry the strength of an analyte's signal under a given set of bombardment conditions is usually considered to be representative of the analytes relative surface activity. This rationale is generally used to explain differences in the technique's sensitivity between and within various classes of compound. In liquid matrix assisted secondary ion mass spectrometry (SIMS) sensitivity enhancement of ionic analytes by pairing with surface active counterions has been demonstrated by several groups. This technique has been utilized in this work to achieve a 10,000 fold enhancement in the signal for ATP on a double focusing magnetic sector instrument and to detect femtomole quantities of nucleoside monophosphates on a time-of-flight instrument. The analyte's signal, however, is dependent on both the analyte bulk concentration and that of the surfactant. Additionally, the surfactant concentration that produces the maximum analyte signal changes with the analyte concentration. In this study, this phenomenon has been modeled in terms of conventional solution equilibria and surface chemical principles. It is assumed that the initial surface composition and the bulk concentration are the boundary conditions of a steady state established by the competing processes of surface sputtering and surface replenishment from the bulk during analysis. Calculated surface excesses correlate well with observed relative ion intensities, suggesting that equilibrium conditions are approached in the sample matrices despite the outwardly dynamic nature of the sputtering processes. / Graduation date: 1994
8

Surface mapping based on the correlated emission of ions and electrons from hypervelocity C60 impacts

Eller, Michael 14 March 2013 (has links)
High resolution mapping of molecular species, specifically sub-micrometer spatial resolution mapping, is at the forefront of recent interest in Secondary Ion Mass Spectrometry (SIMS). Large projectiles, e.g. C60, Au400, display high quasi-molecular ion yields with reduced fragment ion yields compared to atomic or polyatomic projectiles. However, the application of large projectiles in a sub-micrometer beam is hampered by limitations in source brightness and angular emission characteristics which are incompatible with tight focusing. An alternate approach to a focused beam is to reduce the beam intensity to less than 1000 impacts per second (referred to as the event-by-event mode) and localize each projectile impact via an electron emission microscope. The characterization and performance of such an instrument for localizing individual projectile impacts of 15-75keV C60 with sub-micrometer spatial resolution are described here. The quest for localizing single cluster impacts requires an understanding of the relationship between SI and electron emissions. It was found that electron emission is observed independently of the number or type of secondary ion emitted for flat homogeneous samples. The independence of ion and electron emission confirms the rationale for using the emitted electrons to localize individual projectile impacts. Further investigation of electron emission revealed that the electron yield is characteristic of the class of sample investigated (e.g. metal, organic, semiconductor). The electron yield was found to depend on the size and topology of the sample. Additionally, the electron yield increases with increasing projectile velocity. The use of the novel instrumentation presented here, necessitated the development of custom acquisition and analysis software. The analysis of co-emitted species from nano-metric dimensions is enhanced with the ability to perform multiple coincidence/anti-coincidence calculations. New concepts were implemented for integrating localization and mass spectrometry via software solutions for image analysis and localization and subsequently correlation between emitted ions and electrons. The result is software and instrumentation capable of generating ion maps with sub-micrometer spatial resolution.
9

Nano-Domain Analysis Via Massive Cluster Secondary Ion Mass Spectrometry in the Event-by-Event Mode

Pinnick, Veronica Tiffany 2009 December 1900 (has links)
Secondary ion mass spectrometry (SIMS) is a surface analysis technique which characterizes species sputtered by an energetic particle beam. Bombardment with cluster projectiles offers the following notable advantages over bombardment with atomic ions or small clusters: enhanced emission of molecular ions, low damage cross-section, and reduced molecular fragmentation. Additionally, in the case of Au4004 and C60 impacts, desorption originates from nanometric volumes. These features make clusters useful probes to obtain molecular information from both nano-objects and nano-domains. The "event-by-event bombardment/detection mode" probes nano-objects one-at-a-time, while collecting and storing the corresponding secondary ion (SI) information. Presented here are the first experiments where free-standing nano-objects were bombarded with keV projectiles of atomic to nanoparticle size. The objects are aluminum nano-whiskers, 2 nm in diameter and ~250 nm in length. Au4004 has a diameter of ~2 nm, comparable to the nominal diameter of the nanowhiskers. There are notable differences in the SI response from sample volumes too small for full projectile energy deposition. The whisker spectra are dominated by small clusters?the most abundant species being AlO- and AlO2-. Bulk samples have larger yields for AlO2- than for AlO-, while this trend is reversed in whisker samples. Bulk samples give similar abundances of large SI clusters, while whisker samples give an order of magnitude lower yield of these SIs. Effective yields were calculated in order to determine quantitative differences between the nano-objects and bulk samples. The characterization of individual nano-objects from a mixture is demonstrated with negatively charged polymer spheres that are attracted to and retained by the nano-whiskers. The spheres are monodisperse polystyrene nanoparticles (30nm diameter). Our results show that the event-by-event mode can provide information on the nature, size, relative location, and abundance of nano-objects in the field of view. This study presents the first evidence of quantitative molecular information originating from nano-object mixtures. Biologically relevant systems (solid-supported lipid bilayers) were also characterized using Au5 , Au4004 and C60 . Organization-dependent SI emission was observed for phosphocholine bilayers. Lipid domain formation was also investigated in bilayers formed from cholesterol and a mixed lipid system. Trends in the correlation coefficient suggest that cholesterol segregates from the surrounding lipid environment during raft formation.
10

Non-Canonical Amino Acids as Minimal Tags for Investigating Protein Organization and Turnover

Gebura-Vreja, Ingrid-Cristiana 14 October 2015 (has links)
No description available.

Page generated in 0.1141 seconds