• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New capabilities for molecular surface and in-depth analysis with cluster secondary ion mass spectrometry

Alturaifi, Huriyyah January 2018 (has links)
Energetic polyatomic cluster beams are increasingly used in materials processing and surface analysis applications. In secondary ion mass spectrometry (SIMS) such beams have previously been utilised to investigate the chemical distribution of organic molecules (polymers, biological molecules and pharmaceuticals etc). One important application is in organic electronics, where the depth-distribution of organic components is important in the device performance. Massive gas cluster ion beams (GCIBs) have produced more successful depth-profiles for organic electronic devices that smaller projectiles including SF5+ and C60+. However, further work is needed to investigate and optimise experimental parameters to deliver the necessary SIMS performance. This study focused on molecular depth profiling of organic insulator (PMMA) and semiconductor (PTAA and TIPS-pentacene) materials, in single and bi-layered combinations, utilising cluster SIMS, using C60+ and Arn+, at different temperatures and energies. In general, at room temperature, the best depth resolution was obtained, using large Ar-GCIBs of low energy per atom (E/n ~10 eV), in comparison with the smaller Ar-GCIBs or with C60+ beams at the same total impact energy. On materials which sputtering under C60+ bombardment, ion and neutral yields were greatest due to the higher E/n, compared with GCIBs. Data from PMMA show that the sputter yield under C60 and Arn projectiles conform to the published 'universal' dependence of Y/n to E/n. Depth profiling of the semiconductor compounds were unsuccessful, using C60+ projectiles. For depth profiles using large GCIB projectiles, an increase in the secondary ion yield was observed at the interface with the silicon substrate - a phenomenon which was not observed for the smaller projectiles. In general, the most successful depth profiles (i.e. more constant molecular and fragment secondary ion yields, observed at pseudo-steady-state regions) and best depth resolutions were obtained at cryogenic temperatures - conditions under which corresponding sputtering yields and secondary ion yields were suppressed.
2

Characterization of Individual Nanoparticles and Applications of Nanoparticles in Mass Spectrometry

Rajagopal Achary, Sidhartha Raja 2010 May 1900 (has links)
The chemical characterization of individual nanoparticles (NPs) </= 100 nm in diameter is one of the current frontiers in analytical chemistry. We present here, a methodology for the characterization of individual NPs by obtaining molecular information from single massive cluster impacts. The clusters used in this secondary ion mass spectrometry (SIMS) technique are Au4004+ and C60+. The ionized ejecta from each impact are recorded individually which allows to identify ions emitted from a surface volume of ~10 nm in diameter and 5-10 nm in depth. The mode of analyzing ejecta individually from each single cluster impact gives insight into surface homogeneity, in our case NPs and their immediate surroundings. We show that when the NPs (50 nm Al) are larger than the size of the volume perturbed by the projectile, the secondary ion emission (SI) resembles that of a bulk surface. However, when the NP (5 nm Ag) is of the size range of the volume perturbed by projectile the SI emission is different from that of a bulk surface. As part of this sub-assay volume study, the influence of neighboring NP on the SI emission was examined by using a mixture of different types of NPs (5 nm Au and 5 nm Ag). The methodology of using cluster SIMS via a sequence of stochastic single impacts yield information on the surface coverage of the NPs, as well as the influence of the chemical environment on the type of SI emission. We also present a case of soft landing NPs for laser desorption ionization mass spectrometry. NPs enhance the SI emission in a manner that maintains the integrity of the spatial distribution of molecular species. The results indicate that the application can be extended to imaging mass spectrometry.

Page generated in 0.0615 seconds