• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 581
  • 166
  • 92
  • 68
  • 55
  • 26
  • 22
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1258
  • 316
  • 284
  • 187
  • 166
  • 128
  • 123
  • 117
  • 115
  • 114
  • 90
  • 75
  • 71
  • 69
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Genetic regulation of the host response to cardiac surgery and cardiopulmonary bypass

Svoren, E. M. January 2017 (has links)
There is significant variation between individual patients in the magnitude and pattern of their systemic response to cardiac surgery. Poor outcomes in these patients have been associated with a dysfunctional host response. This thesis seeks to define such variability at the level of gene expression by sequential analysis of transcription before and after surgery for a low risk group of patients undergoing elective cardiac surgery and cardiopulmonary bypass (CPB) patients using expression microarray profiling. To that aim, we analysed sequential global gene expression patterns in circulating peripheral blood leukocytes. We also investigated the role of DNA sequence variation in modulating the observed changes in gene expression. This approach allowed us to identify important genetic modulators and novel biological pathways and gain new insights into the mechanisms that regulate the host response to surgery.
112

Design and Evaluation of Oligonucleotide Microarrays for the Detection of Bovine Pathogens

Black, Ryan Weldon 01 May 2009 (has links)
Two microarray designs were developed and produced to screen for multiple bovine pathogens commonly found in the cattle industry today. The first microarray was designed, built, and processed in-house using conventional material and equipment and targeted Pasteurella multocida, Manheimia haemolytica, Histophilus somni, and Arcanobacterium pyogenes. For each pathogen, 12 perfect-match oligonucleotide probes, which were also designed in-house, targeted different sections of the respective 16S ribosomal genes, and were coupled with 12 corresponding mismatched probes for background. These arrays were able to produce distinct hybridization patterns for each pathogen that were easily visible without the need for computer analysis. However, the need for PCR amplification of the 16S gene prior to hybridization motivated us to explore more efficient array options. The second designed microarray, a custom Affymetrix GeneChip, targeted Escherichia coli, Salmonella typhimurium, and Salmonella dublin in addition to the previously mentioned pathogens and was more successful in overall performance than the "in-house" arrays. In addition to the 16S gene, oligonucleotide probes targeted other genes (from 2 to >4500, depending on whether the genome was sequenced) that were unique to each pathogen. This array also differed from the "in-house" arrays in that mismatched probes were not designed. The different probe sets performed at different detection limits as P. multocida, A. pyogenes, S. typhimurium, and S. dublin were detected with as little as 250ng of hybridized genomic DNA (gDNA), while M. haemolytica, H. somni, and E. coli required as much as 1μg gDNA. These pathogens were also spiked into bovine tissue to simulate multiorgan infections in which they were individually detected with the microarray design.
113

Cellular Factors Contributing to Host Cell Permissiveness in Support of Oncolytic Vaccinia Virus Replication / Beteiligung zellulärer Faktoren an der Permissivität von Wirtszellen in Unterstützung der onkolytischen Vaccinia Virus Replikation

Reinboth, Jennifer January 2012 (has links) (PDF)
In initial experiments, the well characterized VACV strain GLV-1h68 and three wild-type LIVP isolates were utilized to analyze gene expression in a pair of autologous human melanoma cell lines (888-MEL and 1936 MEL) after infection. Microarray analyses, followed by sequential statistical approaches, characterized human genes whose transcription is affected specifically by VACV infection. In accordance with the literature, those genes were involved in broad cellular functions, such as cell death, protein synthesis and folding, as well as DNA replication, recombination, and repair. In parallel to host gene expression, viral gene expression was evaluated with help of customized VACV array platforms to get better insight over the interplay between VACV and its host. Our main focus was to compare host and viral early events, since virus genome replication occurs early after infection. We observed that viral transcripts segregated in a characteristic time-specific pattern, consistent with the three temporal expression classes of VACV genes, including a group of genes which could be classified as early-stage genes. In this work, comparison of VACV early replication and respective early gene transcription led to the identification of seven viral genes whose expression correlated strictly with replication. We considered the early expression of those seven genes to be representative for VACV replication and we therefore referred to them as viral replication indicators (VRIs). To explore the relationship between host cell transcription and viral replication, we correlated viral (VRI) and human early gene expression. Correlation analysis revealed a subset of 114 human transcripts whose early expression tightly correlated with early VRI expression and thus early viral replication. These 114 human molecules represented an involvement in broad cellular functions. We found at least six out of 114 correlates to be involved in protein ubiquitination or proteasomal function. Another molecule of interest was the serine-threonine protein kinase WNK lysine-deficient protein kinase 1 (WNK1). We discovered that WNK1 features differences on several molecular biological levels associated with permissiveness to VACV infection. In addition to that, a set of human genes was identified with possible predictive value for viral replication in an independent dataset. A further objective of this work was to explore baseline molecular biological variances associated with permissiveness which could help identifying cellular components that contribute to the formation of a permissive phenotype. Therefore, in a subsequent approach, we screened a set of 15 melanoma cell lines (15-MEL) regarding their permissiveness to GLV-1h68, evaluated by GFP expression levels, and classified the top four and lowest four cell lines into high and low permissive group, respectively. Baseline gene transcriptional data, comparing low and highly permissive group, suggest that differences between the two groups are at least in part due to variances in global cellular functions, such as cell cycle, cell growth and proliferation, as well as cell death and survival. We also observed differences in the ubiquitination pathway, which is consistent with our previous results and underlines the importance of this pathway in VACV replication and permissiveness. Moreover, baseline microRNA (miRNA) expression between low and highly permissive group was considered to provide valuable information regarding virus-host co-existence. In our data set, we identified six miRNAs that featured varying baseline expression between low and highly permissive group. Finally, copy number variations (CNVs) between low and highly permissive group were evaluated. In this study, when investigating differences in the chromosomal aberration patterns between low and highly permissive group, we observed frequent segmental amplifications within the low permissive group, whereas the same regions were mostly unchanged in the high group. Taken together, our results highlight a probable correlation between viral replication, early gene expression, and the respective host response and thus a possible involvement of human host factors in viral early replication. Furthermore, we revealed the importance of cellular baseline composition for permissiveness to VACV infection on different molecular biological levels, including mRNA expression, miRNA expression, as well as copy number variations. The characterization of human target genes that influence viral replication could help answering the question of host cell response to oncolytic virotherapy and provide important information for the development of novel recombinant vaccinia viruses with improved features to enhance replication rate and hence trigger therapeutic outcome. / Die Replikationseffizienz von VACVs spielt eine maßgebliche Rolle für deren antitumorale Wirkung und onkolytische Effizienz. Ferner hängt die Permissivität einer Wirtszelle gegenüber der Behandlung mit onkolytischen VACVs maßgeblich von einer erfolgreichen viralen Replikation und Vermehrung ab. Darauf basierend, war der Fokus der vorliegenden Arbeit, zelluläre Eigenschaften zu erforschen, welche die VACV-Replikation beeinflussen und die Wirtszell-Permissivität gegenüber einer Behandlung mit VACV prognostizieren können. Für initiale Genexpressionsanalysen wurden zwei autologe, humane Melanom-Zelllinien (888-MEL und 1936 MEL), sowie der ausgiebig charakterisierte VACV-Stamm GLV-1h68 und drei wildtypische LIVP Isolate verwendet. Mit Hilfe von Microarray Analysen und einem sequenziellen statistischen Ansatz konnten humane Gene charakterisiert werden, deren Transkription eigens durch VACV-Infektion beeinflusst wird. Erwartungsgemäß zeigten diese Gene eine Anreicherung in globalen zellulären Signalwegen und Funktionen. Die frühe virale Gentranskription kann als repräsentative Bestimmungsgröße für virale Replikation betrachtet werden. Darauf basierend resultierte der Vergleich von früher VACV Replikation und entsprechender früher Gentranskription in der Identifikation von sieben viralen Genen, deren Expression und Replikation stark korrelierten. Aus diesem Grund wurde die frühe Expression der sieben VACV-Gene als kennzeichnend für virale Replikation angesehen und diese Gene als virale Replikations-Indikatoren (VRIs) definiert. Zur Aufklärung von Zusammenhängen zwischen Wirts-Transkription und viraler Replikation wurde die frühe virale VRI-Expression mit der frühen humanen Genexpression in Beziehung gesetzt. Mit Hilfe von Vergleichsanalysen wurden 114 humane Transkripte identifiziert, deren frühes Expressionsmuster eng mit demjenigen der VRIs korrelierte und dementsprechend ebenso mit der viralen Replikation. Von den 114 Korrelaten spielen mindestens sechs eine Rolle in der Protein-Ubiquitinierung oder in der proteasomalen Signalgebung. Ein weiteres Molekül, welches besonderes Interesse weckte, war die Serin-Threonin Proteinkinase WNK Lysin-defizientes Protein 1 (WNK1). Für WNK1 wurden Unterschiede, die mit der VACV-Infektions-Permissivität zusammenhängen, auf verschiedenen molekularbiologischen Ebenen nachgewiesen. Desweiten wurde in dieser Arbeit eine Anzahl humaner Gene identifiziert, welche virale Replikation in einem unabhängigen Datensatz prognostizieren konnten. Eine weitere Zielsetzung dieser Arbeit war es, molekularbiologische Unterschiede, welche mit Infektions-Permissivität von Zellen assoziiert sind, auf Basisebene zu ergründen. Diese könnten dabei helfen, zelluläre Komponenten zu identifizieren, welche einen so genannten permissiven Phänotyp kennzeichnen. Aus diesem Grund wurden in einem weiteren Versuchsansatz 15 Melanom-Zelllinien (15-MEL) bezüglich ihrer Permissivität gegenüber GLV-1h68 anhand von GFP Expression untersucht. Die vier Zelllinien mit der höchsten und diejenigen vier mit der niedrigsten Permissivität wurden je einer Gruppe zugeordnet (hochpermissive und niedrigpermissive Gruppe). Die Gruppen hoher und niedriger Permissivität wurden bezüglich ihrer Basislevel-Transkription verglichen. Unterschiedlich exprimierte Gene waren, zumindest zum Teil, in globale zelluläre Prozesse involviert. Darüber hinaus wurde microRNA (miRNA) Basislevel-Expression von hoch- und niedrigpermissiver Gruppe untersucht. In dieser Arbeit wurden sechs miRNAs identifiziert, deren Basislevel-Expression zwischen niedrig und hochpermissiver Gruppe differiert. Abschließend wurden Veränderungen der Kopienzahl von Genen (copy number variations, CNVs) im Vergleich zwischen niedrig- und hochpermissiver Gruppe untersucht. Betrachtung chromosomaler Veränderungen zeigte eine Anreicherung von Segment-Amplifikationen in der niedrigpermissiven Gruppe, während gleiche Abschnitte der hochpermissiven Gruppe größtenteils keine Veränderungen aufwiesen. Zusammenfassend konnte in dieser Arbeit eine mutmaßliche Korrelation zwischen viraler Replikation, früher Genexpression und der entsprechenden Wirtsantwort gezeigt werden und somit eine mögliche Beteiligung humaner Wirtsfaktoren an der viralen Replikation. Zusätzlich wurden wichtige Aspekte der Basiskomposition von Zellen für die Permissivität gegenüber VACV-Infektion auf verschiedenen molekularbiologischen Ebenen aufgedeckt, einschließlich mRNA-Expression, miRNA-Expression sowie Kopienzahl-Variationen. Die Charakterisierung humaner Zielgene, welche die virale Replikation beeinflussen, könnte dabei helfen, die Wirtszellantwort auf onkolytische Virotherapie aufzuklären und wichtige Informationen zu liefern für die Entwicklung neuartiger rekombinanter Vaccinia-Viren mit verbesserten Eigenschaften und verbesserter Replikationseffizienz und somit einem gesteigerten Therapieerfolg.
114

Vom Glycochip zur lebenden Zelle - Studien zu Infektions- und Tumor-relevanten Kohlenhydrat-Erkennungsprozessen / From Glycochips to Living Cells - investigating carbohydrate recognition processes relevant for infections and tumor diseases

Memmel, Elisabeth January 2015 (has links) (PDF)
Kohlenhydrat-Protein-Wechselwirkungen sind häufig entscheidend beteiligt an verschiedenen einer Infektion oder malignen Erkrankung zugrunde liegenden molekularen Erkennungs-prozessen, die zu Adhäsion, Zell-Zell-Interaktion sowie Immunreaktion und -toleranz führen. Trotz der hohen Relevanz für Diagnostik und Therapie dieser Erkrankungen sind die betreffenden Strukturen und Mechanismen bisher nur ungenügend untersucht und verstanden. Ziel dieser stark interdisziplinär angelegten Arbeit war es daher, Methoden der Fachbereiche Chemie und Pharmazie, Biologie und Medizin, aber auch Physik zu kombinieren, um Kohlenhydraterkennungsprozesse im Detail zu untersuchen und auf dieser Basis strukturell neuartige diagnostische und therapeutische Anwendungen zu entwerfen. Die hochkomplexe Zusammensetzung einer Zelloberfläche wurde zunächst auf ihren Glycan-anteil reduziert und stark vereinfacht auf der Oberfläche sogenannter Glycochips imitiert. Die verwendeten Systeme auf Basis einer Gold- bzw. Glasoberfläche ergänzen sich optimal in ihrer Eignung für komplementäre analytische Methoden wie Massenspektrometrie sowie quantifizierbare Fluoreszenzspektroskopie. Der Übergang auf die lebende Zelloberfläche gelang mit Hilfe des Metabolic Glyco-engineering, das die kovalente Präsentation definierter Motive durch eine Cycloaddition zwischen zwei bioorthogonalen Reaktionspartnern (z.B. Azid und Alkin) ermöglicht. Auf diese Weise wurden in Zusammenarbeit mit der Arbeitsgruppe Sauer (Universität Würzburg) zunächst die Dichte und Verteilung verschiedener Oberflächenglycane auf humanen Zellen mittels hochauflösender Fluoreszenzmikroskopie (dSTORM) bestimmt. Diese Parameter zeigten im Modell des Glycochips einen entscheidenden Einfluss auf Bindungsereignisse und multivalente Erkennung und zählen auch auf natürlichen Zelloberflächen – in engem Zusammenhang mit der lateralen und temporalen Dynamik der Motive – zu den wichtigen Faktoren molekularer Erkennungsprozesse. Die gezielte Modifikation zellulärer Oberflächenglycane eignet sich aber auch selbst als Methode zur Beeinflussung molekularer Wechselwirkungsprozesse. Dies wurde anhand des humanpathogenen Bakteriums S. aureus gezeigt, dessen Adhäsion auf Epithelzellen der Blasenwand durch Metabolic Glycoengineering partiell unterdrückt werden konnte. In einem ergänzenden Projekt wurden zwei potentielle Metabolite eines konventionellen Antibiotikums – des Nitroxolins – mit bakteriostatischer sowie antiadhäsiver Wirksamkeit dargestellt. Diese dienten als Referenzsubstanzen zur Verifizierung der postulierten Struktur der Derivate, werden aber auch selbst auf ihr Wirkprofil hin untersucht. Gleichzeitig stehen sie zusammen mit der Grundverbindung zudem als Referenz für die Wirkstärke potentieller neu entwickelter Antiadhäsiva zur Verfügung. / Interactions between carbohydrates and proteins often are crucial factors in the molecular recognition processes of infectious diseases or cancer, leading to adhesion and cell cell interaction, as well as immune response and immune tolerance. Despite of their high pertinence for diagnostics and successful therapeutic treatment of those diseases, the structures and mechanisms involved are still insufficiently studied and poorly understood. So it was the aim of this strongly interdisciplinary oriented dissertation, to study carbohydrate recognition processes on molecular basis and in detail by combining methods from different scientific schools like chemistry and pharmacy, biology and medicine, as well as physics. Based on the achieved results innovative diagnostic and therapeutic applications should be proposed. Initially the highly complex structural composition of a living cells’ surface was reduced to its’ glycan fraction and mimicked on the surface of so-called glycochips in a very simplified manner. Two systems, based on gold and glass surfaces respectively, were used due to their complementary applicability for different analytical methods like mass spectrometry and quantitative fluorescence spectroscopy. The step forward towards living cell surfaces was achieved by metabolic glycoengineering, a method that enables the covalent installation of defined binding motifs by performing a cycloaddition between two bioorthogonal reaction partners (e.g. azide and alkyne). In cooperation with the group of Prof. Dr. Markus Sauer (Universität Würzburg) this technique was used to determine the density and spatial distribution of different cell surface glycans on human cell lines with high resolution fluorescence microscopy (dSTORM). In the glycochip model these parameters exhibited a key value for binding processes and multivalent recognition. Even on native cell surfaces they are crucial factors of molecular recognition processes – closely related to the lateral and temporal dynamics of the structural motifs. In addition the specific modification of cell surface glycans itself can be used to manipulate molecular interaction processes. This could be shown for the human pathogenic bacterium Staphylococcus aureus by significant reduction of its adhesion potential towards epithelial cells derived from the human bladder after metabolic glycoengineering. Finally a supplementary project aimed to synthesize two prior postulated metabolites of the conventional antibiotic agent nitroxoline that shows bacteriostatic as well as antiadhesive effects. They were used as reference compounds to verify the postulated structure of the two derivatives and currently undergo further studies concerning their intrinsic mode of action. In addition to the parent molecule they also serve as reference compounds to estimate the potential of novel antiadhesives.
115

The effects of regulatory variation in multiple mouse tissues

Cowley, Mark, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2009 (has links)
Recently, it has been shown that genetic variation that perturbs the regulation of gene expression is widespread in eukaryotic genomes. Regulatory variation (RV) is expected to be an important driver of phenotypic differences, evolutionary change, and susceptibility to complex genetic diseases. Because trans-acting regulators of gene expression control mRNA levels of multiple genes simultaneously, we hypothesise that RV that affects these components will have a shared-influence upon the expression levels of multiple genes. Since genes are regulated in trans by combinations of basal and tissue specific factors, we further hypothesise that RV in these components may have different effects in each tissue. We used microarrays to identify 755 genes that were affected by RV in at least one of the brain, kidney and liver of two inbred mouse strains, C57BL/6J and DBA/2J. Just 2% were affected in all three tissues, suggesting that the influence of RV is predominantly tissue specific. To study shared-RV, we measured the expression levels of these 755 genes in the same 3 tissues from a panel of recombinant inbred mice, and identified groups of correlated genes that are putatively under the influence of shared trans-acting RV. Using methods that we developed for studying the effects of RV in multiple tissues, we identified 212 genes that are correlated in all three tissues, which include 10 groups of at least 3 genes. We developed a novel method called coherency analysis to show that RV consistently affected the expression levels of these groups of genes in different genetic backgrounds. Strikingly, the relative up- or down-regulation of genes in each group was markedly different in the three tissues of the same mouse, suggesting that the influence of RV itself is not tissue specific as previously expected, but that RV can influence genes with differing outcomes in each tissue. These observations are compatible with RV affecting combinations of basal and tissue specific regulatory factors. This is the first cross-tissue investigation into the influence of shared-RV in multiple tissues, which has important implications in humans, where access to the phenotypically relevant tissue may be necessarily limited.
116

The effects of regulatory variation in multiple mouse tissues

Cowley, Mark, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2009 (has links)
Recently, it has been shown that genetic variation that perturbs the regulation of gene expression is widespread in eukaryotic genomes. Regulatory variation (RV) is expected to be an important driver of phenotypic differences, evolutionary change, and susceptibility to complex genetic diseases. Because trans-acting regulators of gene expression control mRNA levels of multiple genes simultaneously, we hypothesise that RV that affects these components will have a shared-influence upon the expression levels of multiple genes. Since genes are regulated in trans by combinations of basal and tissue specific factors, we further hypothesise that RV in these components may have different effects in each tissue. We used microarrays to identify 755 genes that were affected by RV in at least one of the brain, kidney and liver of two inbred mouse strains, C57BL/6J and DBA/2J. Just 2% were affected in all three tissues, suggesting that the influence of RV is predominantly tissue specific. To study shared-RV, we measured the expression levels of these 755 genes in the same 3 tissues from a panel of recombinant inbred mice, and identified groups of correlated genes that are putatively under the influence of shared trans-acting RV. Using methods that we developed for studying the effects of RV in multiple tissues, we identified 212 genes that are correlated in all three tissues, which include 10 groups of at least 3 genes. We developed a novel method called coherency analysis to show that RV consistently affected the expression levels of these groups of genes in different genetic backgrounds. Strikingly, the relative up- or down-regulation of genes in each group was markedly different in the three tissues of the same mouse, suggesting that the influence of RV itself is not tissue specific as previously expected, but that RV can influence genes with differing outcomes in each tissue. These observations are compatible with RV affecting combinations of basal and tissue specific regulatory factors. This is the first cross-tissue investigation into the influence of shared-RV in multiple tissues, which has important implications in humans, where access to the phenotypically relevant tissue may be necessarily limited.
117

The effects of regulatory variation in multiple mouse tissues

Cowley, Mark James, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2009 (has links)
Recently, it has been shown that genetic variation that perturbs the regulation of gene expression is widespread in eukaryotic genomes. Regulatory variation (RV) is expected to be an important driver of phenotypic differences, evolutionary change, and susceptibility to complex genetic diseases. Because trans-acting regulators of gene expression control mRNA levels of multiple genes simultaneously, we hypothesise that RV that affects these components will have a shared-influence upon the expression levels of multiple genes. Since genes are regulated in trans by combinations of basal and tissue specific factors, we further hypothesise that RV in these components may have different effects in each tissue. We used microarrays to identify 755 genes that were affected by RV in at least one of the brain, kidney and liver of two inbred mouse strains, C57BL/6J and DBA/2J. Just 2% were affected in all three tissues, suggesting that the influence of RV is predominantly tissue specific. To study shared-RV, we measured the expression levels of these 755 genes in the same 3 tissues from a panel of recombinant inbred mice, and identified groups of correlated genes that are putatively under the influence of shared trans-acting RV. Using methods that we developed for studying the effects of RV in multiple tissues, we identified 212 genes that are correlated in all three tissues, which include 10 groups of at least 3 genes. We developed a novel method called coherency analysis to show that RV consistently affected the expression levels of these groups of genes in different genetic backgrounds. Strikingly, the relative up- or down-regulation of genes in each group was markedly different in the three tissues of the same mouse, suggesting that the influence of RV itself is not tissue specific as previously expected, but that RV can influence genes with differing outcomes in each tissue. These observations are compatible with RV affecting combinations of basal and tissue specific regulatory factors. This is the first cross-tissue investigation into the influence of shared-RV in multiple tissues, which has important implications in humans, where access to the phenotypically relevant tissue may be necessarily limited.
118

Gene expression profiling of chickpea responses to drought, cold and high-salinity using cDNA microarray

Mantri, Nitin Laxminarayan, nitin_mantri@rediffmail.com January 2007 (has links)
Cultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed an d unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE) between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.
119

Transcriptome and Proteome Based Survey to Identify Aluminum-Responsive Genes in Roots of Arabidopsis Thaliana

kumari, manjeet 06 1900 (has links)
Aluminum (Al)stress is a major limitation to crop productivity on acidic soils. To help understand the cellular mechanisms underlying the toxicity and resistance of plants to Al, this thesis involved a large-scale, transcriptomic and proteomic analysis of roots of Arabidopsis thaliana and reports on comparative analysis of transcriptome and proteome of Al stress responses. Using a microarray representing ~93% of the predicted genes in Arabidopsis, a relatively small proportion (3%) of transcripts were detected as Al- responsive. More changes in the transcriptome were detected after long-term (48 h; 1,114 genes), than short-term (6 h; 401 genes) with relatively little overlap of transcripts detected for each time point. These results suggest that Al toxicity is progressive over time and poses some unique challenges to plants. Further, using two dimensional differential in gel electrophoresis (DiGE), 12 (6 h) and 17 (48 h) proteins were found differentially abundant after Al exposure. Most of the identified proteins were involved in primary metabolism and oxidative stress. Cytosolic-malate dehydrogenase (cyt-MDH) was one of the novel Al-responsive protein identified in this study. Transcript abundance of cyt-MDH correlated well with protein abundance, suggesting that cyt-MDH is regulated in part at transcriptional level. Furthermore, homozygous mdh-1 and mdh-2 mutants were more resistant to Al as compared to WT suggesting that regulation of cyt-MDH could play a role in Al resistance. In general, comparative analysis of proteomics data and transcriptomics data showed a poor correlation for both 6 h (r2 = 0.155) and 48 h (r2 = 0.083). The potential role of five class III peroxidases (PER2, PER27, PER34, PER42, PER69) in resistance of roots to Al was explored using quantitative reverse transcriptase PCR and a reverse genetics approach. A diverse range of patterns of transcript abundance was detected using QRT-PCR in response to Al. Furthermore, per2, per21, and per69 mutants showed greater increases in root lengths as compared to WT after Al stress suggesting that regulation of PER might play a role in Al resistance. These results contribute to the identification of candidate genes for the generation of Al-resistant transgenic plants. / Plant Biology
120

Examination of Genetic Changes Associated with Breast Cancer Disparities Across Multiple Ethnicities

Green, Ashley E. 21 October 2011 (has links)
Breast cancer is of a primary concern in women, although it can occur in men. It is the second leading cause of cancer related deaths amongst women, and it is estimated that roughly 39,840 women will die of this disease this year. Breast cancer occurs across all populations and ethnicities. When African-Americans (AA) present with breast cancer, they usually have poorly differentiated tumors, and are more likely to be diagnosed with an advanced stage tumor. When compared to Caucasian (Cau) women, African-American women also have higher breast cancer mortality. The causes of these differences are not yet definitively known, but it has been suggested that the disparities that are present between African-American and Caucasian women are due to a number of factors. A few which have been mentioned are differences in Body Mass Index (BMI), socioeconomic status, health care coverage, and the level of obtained education that exists between the two ethnic groups. Although these factors may account for a small percentage of the difference seen between the two ethnic groups, the underlying cause that may explain why African-American women are at a greater risk of developing aggressive breast cancer may be due to differences in gene expression. A focus of my research project is the comparison of genome-wide gene expression differences between African-American and Caucasian women. Preliminary results from the comparison of normal breast tissue (obtained from reduction mammoplasty) from Caucasian and African-American women suggest there are marked differences in gene expression patterns. Pathway analysis of differentially expressed genes shows that they are involved in protein folding and the immune response. I am currently expanding this study to include a comparison of 10 AA to 10 Cau normal breast samples. These samples are being LCM dissected to separately compare gene expression in epithelial and stromal tissue. Cross comparisons between ethnic groups and tissue types will provide an understanding of normally occurring differences between AA and Cau women, which may help to explain the observed cancer disparities. Data from the study of normal tissue will be compared to gene expression data from triple negative breast cancer (TNBC) patients from both ethnicities.

Page generated in 0.0573 seconds