• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 16
  • 16
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated Microbial Electrolysis Cell (MEC) with an anaerobic Membrane Bioreactor (MBR) for low strength wastewater treatment, energy harvesting and water reclamation

Jimenez Sandoval, Rodrigo J. 11 1900 (has links)
Shortage of potable water is a problem that affects many nations in the world and it will aggravate in a near future if pertinent actions are not carried out. Decrease in consumption, improvements in water distribution systems to avoid losses and more efficient water treatment processes are some actions that can be implemented to attack this problem. Membrane technology and biological processes are used in wastewater treatment to achieve high water quality standards. Some other technologies, besides water treatment, attempt to obtain energy from organic wastes present in water. In this study, a proof-of-concept was accomplished demonstrating that a Microbial Electrolysis Cell can be fully integrated with a Membrane Bioreactor to achieve wastewater treatment and harvest energy. Conductive hollow fiber membranes made of nickel functioned as both filter material for treated water reclamation and as a cathode to catalyze hydrogen production reaction. The produced hydrogen was subsequently converted into methane by hydrogenotrophic methanogens. Organic removal was 98.9% irrespective of operation mode. Maximum volumetric hydrogen production rate was 0.2 m3/m3d, while maximum current density achieved was 6.1 A/m2 (based on cathode surface area). Biofouling, an unavoidable phenomenon in traditional MBRs, can be minimized in this system through self-cleaning approach of hybrid membranes by hydrogen production. The increased rate of hydrogen evolution at high applied voltage (0.9 V) reduces the membrane fouling. Improvements can be done in the system to make it as a promising net energy positive technology for the low strength wastewater treatment.
2

Bioaugmentation as a Strategy to Engineer the Anodic Biofilm Assembly in Microbial Electrolysis Cell Fed with Wastewater

Bader, Mohammed A. 03 1900 (has links)
Microbial electrolysis cell (MEC) system is a potential technology that could treat wastewater while simultaneously generating H2 (green energy). MEC's electroactive bacteria (EAB) are essential microbes responsible for oxidizing organic pollutants (such as acetate) in wastewater using an electrogenesis process. Since EABs comprise the core of MECs, they are essential for maintaining functional stability (Coulombic efficiency (CE), current density, and pollutant removal) of MECs. The cause of EAB becoming dominant at the anode of MECs fed with wastewater is still unclear. Furthermore, efficient EAB are typically not detected in wastewater, and when they are present their abundance is low, which affects their early colonization on the anode and subsequent growth into a mature biofilm. This study investigated bioaugmentation as a strategy to drive the assembly of functionally redundant anode EAB biofilms to improve MEC performance. Two bioaugmentation strategies (Conditions 2 and 3) with known EABs (G. sulfurreducens and D. acetexigens) were tested during the startup of MECs. Meanwhile, control MEC reactors (Condition 1) were operated with only wastewater as the sole source of inoculum to compare the anodic biofilm assembly and system performance with the bioaugmented reactors. Equal number of G. sulfurreducens and D. acetexigens cells were added to the wastewater-fed MEC (10% inoculum at 2.1E+07 live cells/mL). In Condition 3, anodic-biofilm colonized G. sulfurreducens and D. acetexigens was used as anode in wastewater fed MECs. Using single-chambered MEC reactors, the bioaugmented MECs (Condition 2 and 3) performed more efficiently than the non-bioaugmented (Condition 1) MECs. Current generation, CE and gas production were different between the three conditions tested (Condition 3 > Condition 2 > Condition 1). Analysis of 16S rRNA gene sequencing of anodic biofilm indicates revealed that the bacterial communities was not affected between the tested conditions. However, the relative abundance of EABs, mainly G. sulfurreducens and D. acetexigens, was markedly influenced by bioaugmentation compared to the control reactor. The highest peak current generation (~ 1500 mA/m2), CE (70.3 ± 9%), and gas production (0.04 m3/m3/day) was observed in Condition 3. Collectively, these results provide a framework for engineering the anode microbial communities in MECs for wastewater treatment.
3

Towards optimizing the operation of microbial electrolysis cells for heavy metal removal

Fuller, Erin January 2018 (has links)
Heavy metals are a growing environmental concern as they are unable to be metabolized in the environment, leading to bioaccumulation in the food chain and impacting human health. Treating heavy metals is difficult and expensive. Current methods include precipitation (which generates sludge that is costly to dispose of) or requires the use of a membrane, which fouls and requires regeneration. Microbial electrolysis cells (MECs) represent an alternative for treating heavy metal contaminated wastewater. Reactor components are cheap, and operation requires only a small amount of electricity. The electrically active biofilm oxidizes organics in the wastewater while transferring electrons first to the anode, then to the cathode, where aqueous metals are reduced to a solid deposit, a mechanism called electrodeposition. Few studies have been conducted to investigate the best operational conditions for heavy metal removal in MECs. In this study, the effects of hydrodynamics, applied voltage, and initial metal concentration on heavy metal removal mechanisms are investigated, and the best operational practices are determined on a high level. Mixing in the cathode chamber increased electrodeposition by 15%, decreased the cathode potential by -0.06 V, and increased current generation between 10-30%. Increasing the applied voltage from 0.6 V to 1.2 V increased electrodeposition by 22%. With both mixing and higher voltage applied, 93.35% of cadmium was removed from the catholyte in 24 hours. Although high voltage application maximized electrodeposition for short-term treatment, long-term treatment indicated lower applied voltage resulted in healthier MEC reactors, better overall metal recoveries, along with a more stable cathode potential. / Thesis / Master of Applied Science (MASc)
4

Bacterial community analysis, new exoelectrogen isolation and enhanced performance of microbial electrochemical systems using nano-decorated anodes

Xu, Shoutao 15 June 2012 (has links)
Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m��) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m�� generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors. Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to contribute current increase in CNT decorated anode MECs. The up regulated genes encoded to flavin also contribute to current enhancement in CNT decorated anode MECs. / Graduation date: 2013
5

Novel Microbial Electrochemical Technologies and Microorganisms for Power Generation and Desalination

Chehab, Noura A. 12 1900 (has links)
Global increases in water demand and decreases in both the quantity and quality of fresh water resources have served as the major driving forces to develop sustainable use of water resources. One viable alternative is to explore non-traditional (impaired quality) water sources such as wastewater and seawater. The current paradigm for wastewater treatment is based on technologies that are energy intensive and fail to recover the potential resources (water and energy) in wastewater. Also, conventional desalination technologies like reverse osmosis (RO) are energy intensive. Therefore, there is a need for the development of sustainable wastewater treatment and desalination technologies for practical applications. Processes based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs) hold promise for the treatment of wastewater with recovery of the inherent energy, and MDCs could be used for both desalination of seawater and energy recovery. METs use anaerobic bacteria, referred to as exoelectrogens, that are capable of transferring electrons exogenously to convert soluble organic matter present in the wastewater directly into an electrical current to produce electrical power (MFC and MDC) or biogas (MEC). In my dissertation, I investigated the three types of METs mentioned above to: 1) have a better insight on the effect of 4 oxygen intrusion on the microbial community structure and performance of air-cathode MFCs; 2) improve the desalination efficiency of air-cathode MDCs using ion exchange resins (IXRs); and 3) enrich for extremophilic exoelectrogens from the Red Sea brine pool using MECs. The findings from these studies can shape further research aimed at developing more efficient air-cathode MFCs for practical applications, a more efficient integrated IXRMDC configuration that can be used as a pre-treatment to RO, and exploring extreme environments as a source of extremophilic exoelectrogens for niche-specific applications of METs.
6

Fundamental Insights into Propionate Oxidation in Microbial Electrolysis Cells Using a Combination of Electrochemical, Molecular biology and Electron Balance Approaches

Rao, Hari Ananda 11 1900 (has links)
Increasing demand for freshwater and energy is pushing towards the development of alternative technologies that are sustainable. One of the realistic solutions to address this is utilization of the renewable resources like wastewater. Conventional wastewater treatment processes can be highly energy demanding and can fails to recover the full potential of useful resources such as energy in the wastewater. As a consequence, there is an urgent necessity for sustainable wastewater treatment technologies that could harness such resources present in wastewaters. Advanced treatment process based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have a great potential for the resources recovery through a sustainable wastewater treatment process. METs rely on the abilities of microorganisms that are capable of transferring electrons extracellularly by oxidizing the organic matter in the wastewater and producing electrical current for electricity generation (MFC) or H2 and CH4 production (MEC). Propionate is an important volatile fatty acid (VFA) (24-70%) in some wastewaters and accumulation of this VFA can cause a process failure in a conventional anaerobic digestion (AD) system. To address this issue, MECs were explored as a novel, alternative wastewater treatment technology, with a focus on a better understanding of propionate oxidation in the anode of MECs. Having such knowledge could help in the development of more robust and efficient wastewater treatment systems to recover energy and produce high quality effluents. Several studies were conducted to: 1) determine the paths of electron flow in the anode of propionate fed MECs low (4.5 mM) and high (36 mM) propionate concentrations; 2) examine the effect of different set anode potentials on the electrochemical performance, propionate degradation, electron fluxes, and microbial community structure in MECs fed propionate; and 3) examine the temporal dynamics of microbial communities in MECs fed with low or high concentration of acetate or propionate relating to the reactor performance. Overall, the findings from these studies provides new knowledge on propionate oxidation in MECs. The discovery of such findings may shed light on the development of an energy positive wastewater treatment process capable of producing a high quality effluent.
7

Understanding Electro-Selective Fermentation of Scenedesmus acutus and its Effect on Lipids Extraction and Biohydrogenation

January 2019 (has links)
abstract: Electro-Selective Fermentation (ESF) combines Selective Fermentation (SF) and a Microbial Electrolysis Cell (MEC) to selectively degrade carbohydrate and protein in lipid-rich microalgae biomass, enhancing lipid wet-extraction. In addition, saturated long-chain fatty acids (LCFAs) are produced via β-oxidation. This dissertation builds understanding of the biochemical phenomena and microbial interactions occurring among fermenters, lipid biohydrogenaters, and anode respiring bacteria (ARB) in ESF. The work begins by proving that ESF is effective in enhancing lipid wet-extraction from Scenedesmus acutus biomass, while also achieving “biohydrogenation” to produce saturated LCFAs. Increasing anode respiration effectively scavenges short chain fatty acids (SCFAs) generated by fermentation, reducing electron loss. However, the effectiveness of ESF depends on biochemical characteristics of the feeding biomass (FB). Four different FB batches yield different lipid-extraction performances, based on the composition of FB’s cellular structure. Finally, starting an ESF reactor with a long solid retention time (SRT), but then switching it to a short SRT provides high lipid extractability and volumetric production with low lipid los. Lipid fermenters can be flushed out with short a SRT, but starting with a short SRT fails achieve good results because fermenters needed to degrading algal protective layers also are flushed out and fail to recover when a long SRT is imposed. These results point to a potentially useful technology to harvest lipid from microalgae, as well as insight about how this technology can be best managed. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2019
8

Extracellular electron transfer-dependent metabolism of anaerobic ammonium oxidation (Anammox) bacteria

Shaw, Dario Rangel 08 1900 (has links)
Anaerobic ammonium oxidation (anammox) by anammox bacteria contributes significantly to the global nitrogen cycle and plays a major role in sustainable wastewater treatment. To date, autotrophic nitrogen removal by anammox bacteria is the most efficient and environmentally friendly process for the treatment of ammonium in wastewaters; its application can save up to 60% of the energy input, nearly 100% elimination of carbon demand and 80% decrease in excess sludge compared to conventional nitrification/denitrification process. In the anammox process, ammonium (NH4+) is directly oxidized to dinitrogen gas (N2) using intracellular electron acceptors such as nitrite (NO2–) or nitric oxide (NO). In the absence of NO2– or NO, anammox bacteria can couple formate oxidation to the reduction of metal oxides such as Fe(III) or Mn(IV). Their genomes contain homologs of Geobacter and Shewanella cytochromes involved in extracellular electron transfer (EET). However, it is still unknown whether anammox bacteria have EET capability and can couple the oxidation of NH4+ with transfer of electrons to extracellular electron acceptors. In this dissertation, I discovered by using complementary approaches that in the absence of NO2–, freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors such as graphene oxide (GO) or electrodes poised at a certain potential in microbial electrolysis cells (MECs). Metagenomics, fluorescence in-situ hybridization and electrochemical analyses coupled with MEC performance confirmed that anammox electrode biofilms were responsible for current generation through EET-dependent oxidation of NH4+. 15N-labelling experiments revealed the molecular mechanism of the EET-dependent anammox process. NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate when electrode was used as the terminal electron acceptor. Comparative transcriptomics analysis supported isotope labelling experiments and revealed an alternative pathway for NH4+ oxidation coupled to EET when electrode was used as electron acceptor. The results presented in my dissertation provide the first experimental evidence that marine and freshwater anammox bacteria can couple NH4+ oxidation with EET, which is a significant breakthrough that is promising in the context of implementing EET-dependent anammox process for energy-efficient treatment of nitrogen using bioelectrochemical systems.
9

Enhanced Anaerobic Digestion of Municipal Wastewater Sludge using Microbial Electrolysis Cells

Asztalos, Joseph R. 06 1900 (has links)
In municipal wastewater treatment, anaerobic digestion is the slowest process requiring at least 15 day solids retention time (SRT). Treating only a small fraction of the total wastewater stream, anaerobic digesters require large reactor volumes and consistent heating (40°C). Thus, there is a growing need to investigate techniques to improve digestion efficiency. The long SRT requirement is a result of the time required for biological reactions such as hydrolysis and acetoclastic methanogenesis. There are numerous pretreatment methods which have so far been developed to particularly enhance hydrolysis. These pretreatment methods include thermalization, mechanical treatments, and chemical treatments. These methods aim to increase the degradability of the influent waste sludge which in turn will increase the efficiency of the digestion process. The goal of the research presented in this thesis is to enhance another limiting biological reaction: acetoclastic methanogenesis. Microbial electrolysis cell (MEC) technology was integrated into lab-scale anaerobic digesters in order to accelerate biosolids destruction under various SRT and temperature conditions. Various mathematical simulations were conducted using a developed steady-state ADM1 (Anaerobic Digestion Model No.1) model to further evaluate the performance of the digesters. The results of the research indicate that the proposed method is effective at shortened SRTs (e.g., 6 days) and can enhance the stability of anaerobic digestion when exposed to variations in temperature and influent composition. / Thesis / Master of Applied Science (MASc)
10

Heavy Metal Removal From Wastewater Using Microbial Electrolysis Cells

Colantonio, Natalie January 2016 (has links)
Heavy metal contamination in water is a serious environmental and human health issue. Lead (Pb2+) and cadmium (Cd2+) are strictly regulated in wastewater effluent due to their high toxicity at low concentrations. Heavy metals are difficult to remove in conventional biological wastewater treatment because they are water soluble and non-biodegradable. Advanced treatment, such as tight membrane filtration and ion exchange, can be applied but they often require a high electrical energy input and a large amount of chemicals for pre- or post-treatment. Microbial electrolysis cells (MECs) can be used to treat wastewater while simultaneously recovering energy in the form of hydrogen gas. Additionally, MECs were proven to be effective for heavy metal removal. The commonly investigated removal mechanism for heavy metals in MECs is reduction at the cathode where heavy metal ions are reduced to metallic solids. The research presented in this thesis examined the effectiveness of cathodic reduction and other heavy metal removal mechanisms in MECs over a wide range of metal concentrations (10 μg/L-12 mg/L). Lab-scale MEC operation demonstrated successful removal of both Pb2+ and Cd2+ under different electric conditions, operation times, and initial metal concentrations. In addition to cathodic reduction, heavy metal removal in MECs was demonstrated through chemical precipitation at the cathode and electrochemical reduction and biosorption at the bioanode. The results of this research also confirmed the importance of microbial activity at the bioanode to efficiently drive the removal mechanisms in MECs. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0791 seconds