• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Insights into Propionate Oxidation in Microbial Electrolysis Cells Using a Combination of Electrochemical, Molecular biology and Electron Balance Approaches

Rao, Hari Ananda 11 1900 (has links)
Increasing demand for freshwater and energy is pushing towards the development of alternative technologies that are sustainable. One of the realistic solutions to address this is utilization of the renewable resources like wastewater. Conventional wastewater treatment processes can be highly energy demanding and can fails to recover the full potential of useful resources such as energy in the wastewater. As a consequence, there is an urgent necessity for sustainable wastewater treatment technologies that could harness such resources present in wastewaters. Advanced treatment process based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have a great potential for the resources recovery through a sustainable wastewater treatment process. METs rely on the abilities of microorganisms that are capable of transferring electrons extracellularly by oxidizing the organic matter in the wastewater and producing electrical current for electricity generation (MFC) or H2 and CH4 production (MEC). Propionate is an important volatile fatty acid (VFA) (24-70%) in some wastewaters and accumulation of this VFA can cause a process failure in a conventional anaerobic digestion (AD) system. To address this issue, MECs were explored as a novel, alternative wastewater treatment technology, with a focus on a better understanding of propionate oxidation in the anode of MECs. Having such knowledge could help in the development of more robust and efficient wastewater treatment systems to recover energy and produce high quality effluents. Several studies were conducted to: 1) determine the paths of electron flow in the anode of propionate fed MECs low (4.5 mM) and high (36 mM) propionate concentrations; 2) examine the effect of different set anode potentials on the electrochemical performance, propionate degradation, electron fluxes, and microbial community structure in MECs fed propionate; and 3) examine the temporal dynamics of microbial communities in MECs fed with low or high concentration of acetate or propionate relating to the reactor performance. Overall, the findings from these studies provides new knowledge on propionate oxidation in MECs. The discovery of such findings may shed light on the development of an energy positive wastewater treatment process capable of producing a high quality effluent.
2

Controlling microbial community dynamics through engineered metabolic dependencies

Mee, Michael Travis 28 October 2015 (has links)
Metabolic cross-feeding is an important process that can broadly shape microbial communities. Comparative genomic analysis of >6000 sequenced bacteria from diverse environments provides evidence to suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced cross-feeding to support synergistic growth across the biosphere. Still, little is known about specific cross-feeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multi-member, multi-dimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic cross-feeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher-dimensions. This system enabled the identification of synergistic pairings and optimal expression levels of amino acid exporters of arginine, threonine and aromatics towards drastic improvements of ecosystem productivity. Tradeoffs identified in these mutualistic systems between secretion, relative abundance and absolute community productivity have implication in the evolution of cooperative behaviors. Long-term evolution of these synthetic communities highlight transporter over-expression, amino acid pool redistribution, and perturbations to nitrogen regulation as strategies to circumvent imposed metabolic dependencies. To address this potentially problematic genomic plasticity, a genetically reassigned organism is leveraged to investigate synthetic metabolic dependencies showing improved biocontainment and potential for microbial consortia control. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current approaches to modeling and controlling the dynamic complexities of microbial ecosystems. This work sets a foundation for future endeavors in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology.
3

Response and recovery of syntrophic and methanogenic activity to saltwater intrusion in a tidal freshwater marsh soil

Berrier, David J, Jr. 01 January 2019 (has links)
Tidal freshwater wetland soils contain large amounts of organic carbon, some of which is mineralized to carbon dioxide (CO2) and methane (CH4) by a diverse consortium of anaerobic microorganisms that includes fermenters, syntrophs, and methanogens (MG). These microbial groups are tightly linked and often rely on cooperative interspecies metabolisms (i.e., syntrophy) to survive. Environmental perturbations can disrupt these interactions and thus alter the rates and pathways of carbon cycling. One environmental change of particular concern in coastal wetlands is sea level rise, which can result in increased episodic saltwater intrusion events into these ecosystems. These events cause an influx of sulfate (SO4-2) to the soils and may stimulate sulfate-reducing bacteria (SRB), which can directly compete with syntrophs for energy sources (e.g., fermentation products such as butyrate). Since syntroph metabolism generates byproducts that serve as the energy source for many MG, this competition can have indirect negative effects on methanogenesis. In addition, SRB can directly compete with MG for these byproducts, particularly formate, H2, and/or acetate. The goal of this study was to understand how both MG and syntroph-MG consortia respond to and recover from SRB competition during an episodic saltwater intrusion event. To achieve this, microcosms containing soil slurry from a freshwater wetland were subjected to simulated saltwater intrusion, and metabolic inhibitors were used to isolate the activity of the various functional groups. This study focused on the breakdown of butyrate, which is a key energy source in syntroph‑MG consortia metabolisms. The observed changes in butyrate breakdown rates and byproduct accumulation during butyrate degradation assays confirmed that butyrate breakdown was mediated through syntroph-MG consortia, and that formate, rather than H2, was likely used as an electron carrier during syntrophic activity. Additions of SO4‑2 (as Na2SO4) to the freshwater microcosms stimulated SRB activity and shifted the MG community to favor acetoclastic members. These changes were accompanied by a 24% increase in CO2 production and an 80% decrease in CH4 production. Interestingly, when NaCl was added to achieve similar ionic strength, CH4 production decreased by ~32%, suggesting SRB competition is not the only factor affecting methanogenesis. Butyrate degradation rates demonstrated that while SRB were strong competitors for butyrate, concurrent syntrophic metabolism was possible. Further, data show that SRB were poor competitors for acetate, which could explain the increase in acetoclastic MG. Following removal of SRB competition, CH4 production recovered but only by ~50% after 28 days, which suggests that some MG communities in tidal freshwater wetlands may not be resilient to saltwater intrusion events. Over this same time, rates of syntrophic butyrate breakdown largely recovered, but butyrate breakdown resulted in the production of less CH4 and acetate and more CO2 and formate, indicating saltwater intrusion events may lead to persistent changes in the byproducts and pathways of carbon breakdown in tidal freshwater wetlands.
4

Evaluation of magnetic biomass carriers for biogas production

Moestedt Hellman, Jan January 2013 (has links)
This thesis evaluates a novel technique to increase the active biomass inside continuously stirred tank biogas reactors with possible benefits of shorter retention times, higher degree of degradation, higher methane yield and tolerance of higher organic loading rates. The technique includes addition of magnetic biomass carriers to the process which, after adhesion of active microorganisms, can be magnetically separated at reactor outflow and reintroduced to the process. The evaluation of magnetic biomass carriers included methods such as batch experiments, quantitative real-time polymerase chain reaction and continuous reactor experiments with different organic loading rates and addition of volatile fatty acids. The results show that reintroduction of magnetic biomass carriers does indeed work: an accumulated biomass of microorganisms is achieved inside the reactor during a continuous process. Magnetite was selected as the most promising biomass carrier, microbiological studies of the particles show that microbiological colonization of magnetite is present with preferential adhesion of hydrogenotrophic methanogens, important for the methanogenesis. The anaerobic digestion with magnetite as biomass carrier present increased process stability and elevated degrading potential of volatile fatty acids, as well as leading to higher methane content when subjected to increased organic load. Thus, the total gas production is increased in certain situations when using magnetic biomass carriers, why further studies of appropriate hydraulic retention times, organic loading rates and substrates are warranted.
5

Entwicklung einer Technologie zur langzeitstabilen Biologischen Reinigung schwermetallbelasteter Bergbauwässer

Deusner, Christian 04 October 2004 (has links) (PDF)
A new technology for biotechnological treatment of mine waters with both high concentrations of heavy metals and sulphate was developed. The technology is based on the technical coupling of microbially mediated hydrolysis, fermentation and microbial sulphate reduction in a self-stabilising process. Electron donor for sulphate reduction is supplied by degradation of a solid substrate (silage). Elimination of metals is primarily achieved by sulphide precipitation within the sulphate reduction zone. The organic compounds are either supplied by elution or by hydrolysis of polymeric compounds which was named active elution. The concept was realised as a two-phase process with (active) elution in the first phase (R1) and sulphate reduction and metal elimination in the second phase (R2). With this process setup the supply of sufficient amounts of electron donor in R1, a stable and effective sulphate reduction yield as the basis of metal elimination in R2 and a stable separation of microbial processes in R1 and R2 was achieved at hydraulic retention times of 69 h in R1 and 40 h in R2. Almost complete elimination of heavy metals was achieved from wastewaters with 0.2 mM Ni2+, Cu2+, Zn2+, Fe2+ and Mn2. A structurised mathematical model describing the two-phase process was developed on the basis of literature values and tested with data from continuous experiments. Microbial processes were significantly influenced in the presence of precipitated heavy metal sulfides. The effect was dependent on both the bound metal (Ni2+ or Fe2+) and the relative distance between sediment and biomass. / Es wurde eine neuartige Technologie zur biotechnologischen Reinigung von schwermetallbelasteten, sulfathaltigen Bergbauwässern entwickelt. Die Technologie basiert auf der technischen Kopplung von mikrobiell vermittelter Hydrolyse, Fermentation und mikrobieller Sulfatreduktion in einem selbststabilisierenden Prozess, wobei aus Abbau eines festen Substanzgemisches (Silage) Elektronendonor zur Sulfatreduktion bereitgestellt wird. Die Schwermetallelimination erfolgt vorrangig durch sulfidische Fällung, die technisch einstufig mit der mikrobiellen Sulfatreduktion realisiert wurde. Die organischen Verbindungen wurden durch Elution bereitgestellt bzw. durch hydrolytischen Abbau von polymeren Verbindungen. Hierfür wurde der Begriff der ?Aktiven Elution? geprägt. Die Konzeption wurde technisch zweistufig umgesetzt. In der ersten Stufe (R1) erfolgt die (Aktive) Elution, in der zweiten Stufe (R2) erfolgen Sulfatreduktion und Schwermetallelimination. Mit der verfahrenstechnischen Umsetzung wurde die Bereitstellung einer ausreichenden Menge an Elektronendonor in R1, eine effektive und stabile Sulfatreduktionsausbeute als Bedingung der Schwermetallelimination in R2 und eine weitgehende Trennung der mikrobiellen Prozesse in R1 und R2 bei Verweilzeiten von 69 h in R1 und 40 h in R2 erreicht. Bei Behandlung von wässrigen Lösungen mit 0,2 mM Ni2+, Cu2+, Zn2+, Fe2+ und Mn2+ konnte eine nahezu vollständige Elimination der Schwermetalle aus der Lösung erreicht werden. Es wurde ein strukturiertes mathematisches Modell für den zweistufigen Prozess auf der Basis von Literaturangaben entwickelt und anhand der kontinuierlichen Laborversuche überprüft. Es wurde ein erheblicher Einfluss schwermetallsulfidischer Präzipitate auf die mikrobiellen Prozesse festgestellt. Dabei wurde dieser Einfluss in Abhängigkeit von der Art der gebundenen Metallionen (Ni2+ oder/und Fe2+) und in Abhängigkeit der relativen räumlichen Anordnung von Sediment und Biomasse festgestellt.
6

Entwicklung einer Technologie zur langzeitstabilen Biologischen Reinigung schwermetallbelasteter Bergbauwässer

Deusner, Christian 27 May 2004 (has links)
A new technology for biotechnological treatment of mine waters with both high concentrations of heavy metals and sulphate was developed. The technology is based on the technical coupling of microbially mediated hydrolysis, fermentation and microbial sulphate reduction in a self-stabilising process. Electron donor for sulphate reduction is supplied by degradation of a solid substrate (silage). Elimination of metals is primarily achieved by sulphide precipitation within the sulphate reduction zone. The organic compounds are either supplied by elution or by hydrolysis of polymeric compounds which was named active elution. The concept was realised as a two-phase process with (active) elution in the first phase (R1) and sulphate reduction and metal elimination in the second phase (R2). With this process setup the supply of sufficient amounts of electron donor in R1, a stable and effective sulphate reduction yield as the basis of metal elimination in R2 and a stable separation of microbial processes in R1 and R2 was achieved at hydraulic retention times of 69 h in R1 and 40 h in R2. Almost complete elimination of heavy metals was achieved from wastewaters with 0.2 mM Ni2+, Cu2+, Zn2+, Fe2+ and Mn2. A structurised mathematical model describing the two-phase process was developed on the basis of literature values and tested with data from continuous experiments. Microbial processes were significantly influenced in the presence of precipitated heavy metal sulfides. The effect was dependent on both the bound metal (Ni2+ or Fe2+) and the relative distance between sediment and biomass. / Es wurde eine neuartige Technologie zur biotechnologischen Reinigung von schwermetallbelasteten, sulfathaltigen Bergbauwässern entwickelt. Die Technologie basiert auf der technischen Kopplung von mikrobiell vermittelter Hydrolyse, Fermentation und mikrobieller Sulfatreduktion in einem selbststabilisierenden Prozess, wobei aus Abbau eines festen Substanzgemisches (Silage) Elektronendonor zur Sulfatreduktion bereitgestellt wird. Die Schwermetallelimination erfolgt vorrangig durch sulfidische Fällung, die technisch einstufig mit der mikrobiellen Sulfatreduktion realisiert wurde. Die organischen Verbindungen wurden durch Elution bereitgestellt bzw. durch hydrolytischen Abbau von polymeren Verbindungen. Hierfür wurde der Begriff der ?Aktiven Elution? geprägt. Die Konzeption wurde technisch zweistufig umgesetzt. In der ersten Stufe (R1) erfolgt die (Aktive) Elution, in der zweiten Stufe (R2) erfolgen Sulfatreduktion und Schwermetallelimination. Mit der verfahrenstechnischen Umsetzung wurde die Bereitstellung einer ausreichenden Menge an Elektronendonor in R1, eine effektive und stabile Sulfatreduktionsausbeute als Bedingung der Schwermetallelimination in R2 und eine weitgehende Trennung der mikrobiellen Prozesse in R1 und R2 bei Verweilzeiten von 69 h in R1 und 40 h in R2 erreicht. Bei Behandlung von wässrigen Lösungen mit 0,2 mM Ni2+, Cu2+, Zn2+, Fe2+ und Mn2+ konnte eine nahezu vollständige Elimination der Schwermetalle aus der Lösung erreicht werden. Es wurde ein strukturiertes mathematisches Modell für den zweistufigen Prozess auf der Basis von Literaturangaben entwickelt und anhand der kontinuierlichen Laborversuche überprüft. Es wurde ein erheblicher Einfluss schwermetallsulfidischer Präzipitate auf die mikrobiellen Prozesse festgestellt. Dabei wurde dieser Einfluss in Abhängigkeit von der Art der gebundenen Metallionen (Ni2+ oder/und Fe2+) und in Abhängigkeit der relativen räumlichen Anordnung von Sediment und Biomasse festgestellt.

Page generated in 0.0588 seconds