• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthese und Charakterisierung Niob- und Tantal-dotierter Zinnoxide als potentielle Katalysatorträgermaterialien für Brennstoffzellen

Clausing, Aline 01 July 2019 (has links)
Die vorliegende Arbeit entstand im Zeitraum 12/2014 bis 02/2018 im erweiterten Rahmen des BMWi-Projekts „NeoKarII“ in Kooperation mit der Umicore AG & Co. KG. Das Projekt befasste sich mit der Suche nach neuartigen, oxidischen Elektrodenmaterialien für Polymerelektrolytmembranbrennstoffzellen (PEM-FC). Im Rahmen dieser Arbeit wurden Niob- und Tantal-dotierte Zinnoxide mit verschiedenen Dotiergraden (hauptsächlich 1 bis 10 %) über Sol-Gel Synthesen, Imprägnierungen und Co-Fällung hergestellt. Für die Co-Fällungen wurde eine MicroJet-Reaktor Anlage entwickelt und aufgebaut. Die Materialien wurden anschließend röntgenografisch untersucht und auf ihre Eignung für die Anwendung als Katalysatorträgermaterial in PEM-FC geprüft. Als Zielgrößen dienten die BET-Oberfläche und spezifische Leitfähigkeit, welche mit einem eigens entwickelten Leitfähigkeitsmessstand ermittelt wurde.:1 Einleitung 1.1 Brennstoffzellen 1.2 Methoden zur Synthese der Mischoxide 1.3 Eigenschaften von Zinnoxiden 1.4 Zielsetzung 2 Ergebnisse und Diskussion 2.1 Synthesen und Beobachtungen 2.2 Röntgenfluoreszenzanalyse 2.3 Pulver-Röntgendiffraktometrie 2.4 BET-Oberfläche 2.5 Leitfähigkeit 2.6 Röntgenphotoelektronenspektroskopie 3 Experimenteller Teil 3.1 Synthesen 3.2 Analytische Methoden 4 Zusammenfassung und Ausblick 4.1 Zusammenfassung 4.2 Ausblick 5 Anhang / This thesis was developed between 12/2014 and 02/2018 in an extended framework of BMWi project „NeoKarII “ in cooperation with Umicore AG & Co. KG. The project was concerned with the search for novel oxidic electrode materials for polymer electrolyte fuel cells (PEM-FC). In this work we prepared niobium- and tantalum-doped tin oxides with different doping levels (mainly 1 to 10 %) by sol-gel synthesis, impregnation and co-precipitation. For co-precipitation we developed and built a MicroJet reactor plant. We analysed the materials by X-ray diffraction and tested them for suitability for use as catalyst support material in PEM-FC. Target values were BET surface area and specific conductivity, which was determined using a specially developed conductivity measurement setup.:1 Einleitung 1.1 Brennstoffzellen 1.2 Methoden zur Synthese der Mischoxide 1.3 Eigenschaften von Zinnoxiden 1.4 Zielsetzung 2 Ergebnisse und Diskussion 2.1 Synthesen und Beobachtungen 2.2 Röntgenfluoreszenzanalyse 2.3 Pulver-Röntgendiffraktometrie 2.4 BET-Oberfläche 2.5 Leitfähigkeit 2.6 Röntgenphotoelektronenspektroskopie 3 Experimenteller Teil 3.1 Synthesen 3.2 Analytische Methoden 4 Zusammenfassung und Ausblick 4.1 Zusammenfassung 4.2 Ausblick 5 Anhang
2

Ausbildung und Charakterisierung von permeablen Werkstoffverbunden durch Fällung von Polymerstrukturen

Mädler, Andrea 16 July 2009 (has links) (PDF)
Das Ziel der Arbeit bestand darin, ein verbessertes Verfahren zur Ausbildung einer Polyurethanschicht mit poröser Kapillarstruktur zu erarbeiten. Die Fällung (Koagulation) einer Polyurethanlösung erfolgt durch kontrollierte Freisetzung von Fällmittel aus einem zugesetzten, thermisch sensiblen und porös umhüllten Hydrogel. Bei Erwärmung auf eine stoffspezifische Temperatur setzt das Hydrogel Wasser frei, das die Fällung initiiert. Gegenüber der Fällung in einem Fällbad erzielt diese Verfahrensweise deutliche Verbesserungen. Die umhüllten Gele wurden mit Hilfe rheologischer, thermoanalytischer und weiterer Untersuchungsmethoden umfassend charakterisiert. Dadurch gelang es, eine Hüllenstruktur auszuwählen, die den spontanen Austausch von Löse- und Fällmittel verhindert und gleichzeitig die Wasserfreisetzung gewährleistet.
3

Untersuchungen zum Recycling von Aluminiumbronze in der metallverarbeitenden Industrie

Jablonski, Krzysztof 08 December 2014 (has links) (PDF)
Ziel der Arbeit war das mögliche Einsatzspektrum von Sekundärmaterialien im Prozess der Herstellung von Bauteilen aus Aluminiummehrstoffbronzen (CuAl15Fe5Ni2Mn2) zu erweitern, um das Werkstoffrecycling in der Gießerei auf höchstmöglichem Niveau einzusetzen. Verschiedene Raffinationsmöglichkeiten wurden analysiert und 4 davon getestet. Die Schleifstaubaufbereitung mittels Magnetbandringscheider und Permanent- Magnettrommelscheider wurde erprobt und im industriellen Maßstab getestet. Weiterhin wurde die Gasraffinationswirkung auf die Schmelze mit Stickstoff und Argon sowie mit der Zugabe von Chlor und Ammoniak getestet. Die Salzraffination der Schmelze wurde untersucht und die optimalen Raffinationszusammensetzungen wurden definiert. Die fraktionierte Kristallisation als Raffinationsmethode für die Aluminiummehrstoffbronze wurde ebenfalls untersucht. Im Anschluss wurden die Einsatzmöglichkeiten der Raffinationstechnologien in der Giessereiindustrie kritisch bewertet.
4

Ausbildung und Charakterisierung von permeablen Werkstoffverbunden durch Fällung von Polymerstrukturen

Mädler, Andrea 22 July 2005 (has links)
Das Ziel der Arbeit bestand darin, ein verbessertes Verfahren zur Ausbildung einer Polyurethanschicht mit poröser Kapillarstruktur zu erarbeiten. Die Fällung (Koagulation) einer Polyurethanlösung erfolgt durch kontrollierte Freisetzung von Fällmittel aus einem zugesetzten, thermisch sensiblen und porös umhüllten Hydrogel. Bei Erwärmung auf eine stoffspezifische Temperatur setzt das Hydrogel Wasser frei, das die Fällung initiiert. Gegenüber der Fällung in einem Fällbad erzielt diese Verfahrensweise deutliche Verbesserungen. Die umhüllten Gele wurden mit Hilfe rheologischer, thermoanalytischer und weiterer Untersuchungsmethoden umfassend charakterisiert. Dadurch gelang es, eine Hüllenstruktur auszuwählen, die den spontanen Austausch von Löse- und Fällmittel verhindert und gleichzeitig die Wasserfreisetzung gewährleistet.
5

Skalierungsabhängige vergleichende Untersuchungen zur Co-Präzipitation von heterogenen Katalysatoren für die Oxidation von Dieselruß am Beispiel Ce_1-x' ^'IV'Bi_'x-' ^'III'O_'2-x/2'

Hebert, Sabrina Christina 21 December 2022 (has links)
Die vorgelegte Arbeit entstand im Zeitraum zwischen 04/2016 bis 10/2020 und wurde durch ein Promotionsstipendium des evangelischen Studienwerks Villigst e.V. gefördert. Das Ziel der vorgelegten Arbeit ist die Etablierung einer einheitlichen und automatisierten Co-Fällungsmethode für die Mischoxidsysteme der Form CeaMbOx mit M = Bi, Fe und Mn, die als Katalysatoren für den Abbrand eines Modelldieselrußes dienen. Für den thermogravimetrisch ermittelten Rußabbrand erfolgt die Kontaktierung zwischen Ruß und Katalysator im automatisierten Kontakt. Als Kenngrößen der Aktivität finden spezifische Abbrandtemperaturen sowie die dynamische Sauerstoffspeicherkapazität Anwendung.:Bibliographische Beschreibung und Referat III Danksagung VII Inhaltsverzeichnis IX 1. Einleitung 1 2. Zielsetzung 3 3. Theorie 5 3.1 Katalyse 5 3.2 Autoabgaskatalyse 5 3.2.1 Abgaskatalyse bei Ottomotoren 6 3.2.1.1 Dreiwegekatalysator 6 3.2.1.2 Benzinpartikelfilter 8 3.2.2 Autoabgaskatalyse bei Dieselmotoren 9 3.2.2.1 NOx-Kontrolle 10 3.2.2.2 Dieseloxidationskatalysator 11 3.2.2.3 Entfernung von Dieselruß 11 3.3 Oxidation von Ruß 17 3.3.1 Bildung von Ruß 17 3.3.1.1 Bildung von Aromaten 17 3.3.1.2 Wachstum von Aromaten 19 3.3.1.3 Partikelbildung 20 3.3.1.4 Oberflächenreaktionen 21 3.3.1.5 Partikelkoagulation 22 3.3.2 Mechanismus zur Oxidation von Ruß 23 3.3.2.1 Unkatalysierte Oxidation von Ruß mit O2 23 3.3.2.2 Unkatalysierte Oxidation von Ruß mit NO2 29 3.3.2.3 Katalysierte Oxidation von Ruß 31 3.4 CeO2 und CeO2-basierte Katalysatoren 42 3.4.1 CeO2 42 3.4.2 Cer-Bismut-Oxide 45 3.4.3 Cer-Eisen-Oxide 49 3.4.4 Cer-Mangan-Oxid 52 3.4.5 Zusammenfassung der Literaturrecherche 55 3.5 Synthese von Katalysatoren 56 3.5.1 Fällungsreaktionen 56 3.5.1.1 Allgemeine Grundlagen von Fällungsreaktionen 56 3.5.1.2 Ablauf von Fällungsreaktionen 57 3.5.1.3 Übersättigung 58 3.5.1.4 Keimbildung 59 3.5.1.5 Änderung der freien Enthalpie bei der Keimbildung 60 3.5.1.6 Kristallwachstum 62 3.5.1.7 Einflussgrößen auf Fällungsreaktionen 62 3.5.2 Sol-Gel-Synthese 63 3.5.3 Imprägnieren 64 3.5.4 Mikroemulsion 64 3.5.5 Weitere Synthesemethoden 64 4. Ergebnisse und Diskussion 66 4.1 Methodenentwicklung zur Bestimmung der Ionenkonzentration im Filtrat 66 4.1.1 Photometrische Bestimmung von Ce3+/4+, Bi3+ und Fe3+ 66 4.1.2 Photometrische Bestimmung von Manganionen 71 4.2 Weitere Filtratanalyse 73 4.3 Methodenentwicklung zur Analyse der Oxidproben 75 4.4 Kenngrößen zur Auswertung der Aktivitätsmessungen 80 4.5 Methodenentwicklung zur Kontaktierung von Ruß und Katalysator 83 4.6 Methodenentwicklung der Synthese am Syntheseroboter Chemspeed SLT 106 98 4.6.1 Allgemeine Beschreibung des Syntheseroboters Chemspeed SLT 106 98 4.6.2 Vorversuche mit den Modulen Reaktorblock und Vial 99 4.6.3 Modifizierung des Aufbaus der Chemspeed SLT 106 103 4.6.4 Optimierung der Dosierparameter an der Chemspeed SLT 106 104 4.7 Cer-Bismut-Oxid 107 4.7.1 Auswertung der Vorversuche 107 4.7.1.1 Vorversuche zur Fällung von Bi2O3 108 4.7.1.2 Vorversuche zur Fällung von CeO2 112 4.7.1.3 Zusammenfassung der Vorversuche 119 4.7.2 Synthese der Fällungsbibliotheken für das CeaBibOx-System 122 4.7.2.1 Titrator-Fällungsbibliothek 124 4.7.2.2 Einfluss der Dosiergeschwindigkeit des Fällungsmittels auf die Partikelgröße des Niederschlages 132 4.7.2.3 Chemspeed-Fällungsbibliothek 133 4.7.2.4 Reverse Strike Chemspeed-Fällungsbibliothek 148 4.7.2.5 Normale Fällung mit Ölsäure – Fällungsbibliothek II 160 4.7.2.6 Zusammenfassung der CeaBibOx-Fällungsbibliotheken 179 4.8 Cer-Eisen-Oxid 182 4.8.1 Vorversuche zur Fällung von Eisenoxiden 182 4.8.2 Vorversuche zur Fällung von Cer-Eisen-Oxiden 186 4.8.3 Synthese der Fällungsbibliotheken für das CeaFebOx-System 190 4.8.3.1 Chemspeed-Fällungsbibliothek mit H2O als Lösungsmittel 190 4.8.3.2 Reverse Strike-Fällungsbibliothek mit H2O als Lösungsmittel 202 4.8.3.3 Reverse Strike-Fällungsbibliothek mit HNO3 als Lösungsmittel 212 4.8.3.4 Zusammenfassung der CeaFebOx-Fällungsbibliotheken 223 4.9 Cer-Mangan-Oxid 226 4.9.1 Vorversuche zur Fällung von Manganoxiden 226 4.9.2 Vorversuche zur Fällung von Cer-Mangan-Oxiden 230 4.9.3 Synthese der CeaMnbOx-Fällungsbibliotheken 231 4.9.3.1 Chemspeed-Fällungsbibliothek mit H2O als Lösungsmittel 231 4.9.3.2 Reverse Strike-Fällungsbibliothek mit H2O als Lösungsmittel 243 4.9.3.3 Reverse Strike-Fällungsbibliothek mit HNO3 als Lösungsmittel 255 4.9.4 Zusammenfassung des CeaMnbOx-Systems 267 5 Zusammenfassung 269 6 Experimenteller Teil 275 6.1 Verwendete Chemikalien 275 6.2 Synthesevorschriften 276 6.2.1 Batch-Synthese am Titrator 276 6.2.2 Automatisierte Synthese 279 6.3 Kontaktierung von Ruß und Katalysator 283 6.4 Aktivitätsmessungen 284 6.4.1 Messung des Rußabbrandes 284 6.4.2 Messung der dynamischen Sauerstoffspeicherkapazität 285 6.5 Filtratanalyse 286 6.5.1 Photometrische Bestimmung von Bi3+, Ce4+ und Fe3+ 286 6.5.2 Photometrische Bestimmung von Mn2+ 287 6.6 Charakterisierung der Katalysatoren 288 6.6.1 Röntgenpulverdiffraktometrie (PXRD) 288 6.6.2 Ramanspektroskopie 288 6.6.3 Spezifische Oberfläche nach Brunauer, Emmett und Teller (SBET) 289 6.6.4 Röntgenfluoreszenzanalyse (RFA) 289 6.6.5 Dynamische Lichtstreuung (DLS) 289 6.6.6 Statische Lichtstreuung (SLS) 290 6.6.7 Transmissionselektronenmikroskopie und Energiedispersive Röntgenspektroskopie (TEM/EDX) 291 7 Verzeichnisse 292 7.1 Abkürzungsverzeichnis 292 7.2 Abbildungsverzeichnis 300 7.3 Tabellenverzeichnis 308 7.4 Literaturverzeichnis 317 8 Anhang 344 Lebenslauf 355 Veröffentlichungen und andere wissenschaftliche Leistungen 356 Selbständigkeitserklärung 357
6

Untersuchungen zum Recycling von Aluminiumbronze in der metallverarbeitenden Industrie

Jablonski, Krzysztof 25 November 2014 (has links)
Ziel der Arbeit war das mögliche Einsatzspektrum von Sekundärmaterialien im Prozess der Herstellung von Bauteilen aus Aluminiummehrstoffbronzen (CuAl15Fe5Ni2Mn2) zu erweitern, um das Werkstoffrecycling in der Gießerei auf höchstmöglichem Niveau einzusetzen. Verschiedene Raffinationsmöglichkeiten wurden analysiert und 4 davon getestet. Die Schleifstaubaufbereitung mittels Magnetbandringscheider und Permanent- Magnettrommelscheider wurde erprobt und im industriellen Maßstab getestet. Weiterhin wurde die Gasraffinationswirkung auf die Schmelze mit Stickstoff und Argon sowie mit der Zugabe von Chlor und Ammoniak getestet. Die Salzraffination der Schmelze wurde untersucht und die optimalen Raffinationszusammensetzungen wurden definiert. Die fraktionierte Kristallisation als Raffinationsmethode für die Aluminiummehrstoffbronze wurde ebenfalls untersucht. Im Anschluss wurden die Einsatzmöglichkeiten der Raffinationstechnologien in der Giessereiindustrie kritisch bewertet.:Inhaltsverzeichnis: 1. EINLEITUNG ---------------------------------------------------------------------------------------------- 6 2. AUFGABENSTELLUNG -------------------------------------------------------------------------------- 8 3. LITERATURAUSWERTUNG------------------------------------------------------------------------- 10 3.1 EINTEILUNG UND EIGENSCHAFTEN VON ALUMINIUMBRONZEN -------------------------------- 10 3.1.1 Phasen komplexer Aluminiumbronzen -------------------------------------------------- 11 3.1.2 Physikalische Eigenschaften von Aluminiumbronzen ------------------------------- 13 3.2 RAFFINATION VON ALUMINIUMBRONZE ------------------------------------------------------------ 14 3.2.1 Schrottnormen und Schrottklassifizierung ---------------------------------------------- 14 3.2.2 Möglichkeiten der Aluminiumbronzeraffination ---------------------------------------- 18 3.2.3 Grenzen der Einsetzbarkeit der Aluminiumraffinationstechnologien für Aluminiumbronze --------------------------------------------------------------------------------- 19 4. PRÄZISIERUNG DER AUFGABENSTELLUNG ------------------------------------------------ 23 5. UNTERSUCHUNGEN ZUR SCHLEIFSTAUBAUFBEREITUNG --------------------------- 24 5.1 PHYSIKALISCH–CHEMISCHE CHARAKTERISTIK VON SCHLEIFSTAUB -------------------------- 24 5.1.1 Korngrössenbestimmung ------------------------------------------------------------------- 25 5.1.2 Chemische Analyse vom Schleifstaub -------------------------------------------------- 25 5.2 BESTIMMUNG DES ZIRKONIUMGEHALTES IM SCHLEIFSTAUB ----------------------------------- 27 5.3 UNTERSUCHUNGEN ZUR REINIGUNG VOM SCHLEIFSTAUB ------------------------------------- 27 5.4 REINIGUNG MIT EINEM TROMMELSCHEIDER ------------------------------------------------------ 32 5.4.1 Reinigung von Grobschleifstaub (Probe 1)--------------------------------------------- 34 5.4.2 Reinigung von gekauftem Schleifstaub (Probe 3) ------------------------------------ 35 5.4.3 Reinigung von Feinschleifstaub (Probe 2) --------------------------------------------- 36 6. UNTERSUCHUNGEN ZUR CHEMISCH-METALLURGISCHEN RAFFINATION VON ALUMINIUMBRONZEN ----------------------------------------------------------------------------------- 38 6.1 GASRAFFINATION ------------------------------------------------------------------------------------- 39 6.1.1 Vorbereitung und Versuchsdurchführung ---------------------------------------------- 39 6.1.2 Raffination mit Stickstoff -------------------------------------------------------------------- 41 Untersuchungen zum Recycling von Aluminiumbronze in der metallverarbeitenden Industrie 6.1.3 Raffination mit Argon ------------------------------------------------------------------------- 46 6.1.4 Raffination mit Stickstoff / Ammoniak und Argon / Ammoniak -------------------- 48 6.1.5 Untersuchungen zum Verhalten von Silicium bei der Gasraffination------------ 59 6.2 INTERMETALLISCHE FÄLLUNG ----------------------------------------------------------------------- 60 6.3 SALZRAFFINATION ------------------------------------------------------------------------------------ 64 6.3.1 Schmelzpunktbestimmung von Raffinationssalzgemischen ----------------------- 67 6.3.2 Raffination mit Schmelzsalzen ------------------------------------------------------------ 68 6.3.3 Schmelzversuche mit einzelnen Salzkomponenten --------------------------------- 74 6.3.3.1 Silicium- und Aluminiumgehalt in der Legierung vor und nach der Raffination mit Einzelkomponenten -------------------------------------------------------------- 75 6.3.3.2 Natrium- und Calciumkonzentration in der Legierung vor und nach der Salzraffination ----------------------------------------------------------------------------- 77 6.3.3.3 Einfluss des Fluoridgehaltes im Salz auf die Schmelze -------------------------- 78 6.3.3.4. Charakterisierung der eingesetzten Salzmischungen --------------------------- 80 6.3.3.5 Verwendung von K3AlF6 als Hauptkomponente neuer Salze ------------------- 81 6.3.3.6 Untersuchungen mit neu entwickelten Raffinationssalzen ---------------------- 82 7. FEHLERBETRACHTUNG BEI DER VERSUCHSDURCHFÜHRUNG ------------------- 86 8. BEWERTUNG DER ERGEBNISSE UND DISKUSSION ------------------------------------- 88 9. LITERATURVERZEICHNIS -------------------------------------------------------------------------- 92
7

Herstellung von Nanocompositen aus Cellulose und präzipitiertem Calciumcarbonat zur Festigkeitssteigerung in Papier

Lutsch, Birgit 07 February 2022 (has links)
In dieser Studie wird ein neuer Ansatz zur Herstellung von Hybridfüllstoffen – Compositen aus Cellulose und präzipitiertem Calciumcarbonat – zur Festigkeitssteigerung in Papier sowie für Anwendungen über die Papierherstellung hinaus (wie bspw. Kunststoff sowie Baufaserplatten, Filter oder Filterhilfsmittel und Foamforming-Produkte) vorgestellt. Das Hauptaugenmerk lag dabei auf der Fällung von CaCO3 über Doppelaustauschreaktion mit Calciumhalogeniden (CaCl2) und Alkalimetallcarbonaten (vorwiegend Na2CO3) auf chemisch und mechanisch modifizierte Faserstoffe in einem Doppelschneckenextruder. Die Hypothese, die dieser Doktorarbeit zugrunde lag, war, dass es möglich ist, CaCO3 durch die reaktive Extrusion direkt auf die Fasern – durch deren veränderte Ladungseigenschaften nach Modifizierung – auszufällen und damit eine irreversible Anlagerung des mineralischen Füllstoffs an den cellulosischen Faserstoff zu generieren. Dabei erwies sich die reaktive Extrusion als vielversprechende Methode sowohl für die Erzeugung carboxymethylierter und fibrillierter Faserstoffe (CMFC) als auch für die in-situ Fällung von CaCO3 direkt auf die CMFC zur Herstellung faserarmierter Füllstoffe mit einer optimierten Füllstoffretention. Darüber hinaus wurde untersucht, inwiefern sich durch die Einstellung der Reaktions- und Prozessparameter die CaCO3-Morphologie, Kristallform und -größe steuern und damit die resultierenden Composite-Eigenschaften einstellen lassen. Zudem konnte durch Anwendungsversuche der neuartigen Hybridfüllstoffe das Potenzial eben dieser in variierenden Endanwendungen – besonders jedoch zur Festigkeitssteigerung in Papier sowie zur Verbesserung des Eigenschaftsprofils in Polypropylen – verdeutlicht werden. Die Untersuchungen zeigten, dass die funktionellen Faserstoffeigenschaften einen entscheidenden Einfluss auf die CaCO3-Fällung – sowohl auf die Kristallisations- als auch Umwandlungsprozesse – und damit auf die resultierenden Hybridfüllstoff-Eigenschaften haben. Besonders wird die Keimbildungsrate durch die hydrogelartige Oberfläche der CMFC reduziert und das Kristallwachstum gefördert, sodass vor-wiegend große CaCO3-Kristalle (≥ 3 µm) an bzw. in der hydrogelartigen Faseroberfläche entstehen. Ebenso konnte gezeigt werden, dass sich auch bei intensiver mechanischer Behandlung bis zu 89 wt.-% des ausgefällten CaCO3 nicht von der CMFC lösen und demnach irreversibel angelagert sind. Dies führt bei der Laborblattbildung zu einer Verbesserung der CaCO3-Retention von 62 wt.-% auf 80 wt.-% bei Kurzfaserzellstoff (BEKP) bzw. von 38 wt.-% auf 91 wt.-% bei Langfaserzellstoff (NBSK). Darüber hinaus konnte gezeigt werden, dass die Hybridfüllstoffe zu einer Festigkeitssteigerung (Tensile Index) um das 1,5-fache bei NBSK- (16,4 Nm/g) und um das 2,1-fache bei BEKP-Laborblättern (26,2 Nm/g) beitragen. Diese Doktorarbeit verdeutlicht, dass die reaktive Extrusion ein innovatives und zukunftsfähiges Verfahren zur Composite-Herstellung ist und die neuartigen Hybridfüllstoffe Potenzial für den vielseitigen Einsatz in variierenden Materialien versprechen.:Abstract I Zusammenfassung II Danksagung III Eidesstattliche Erklärung IV Abbildungsverzeichnis VIII Abkürzungsverzeichnis XIV Formelzeichen und Indizes XVIII Formelverzeichnis XXII Normen- und Methodenverzeichnis XXIII Tabellenverzeichnis XXVI 1 Einleitung 1 2 Allgemeiner Aufbau von Zellstofffasern 3 2.1 Holzquelle Wald 3 2.2 Anatomie des Holzes 3 2.3 Morphologische Eigenschaften und chemische Zusammensetzung der Zellwand 5 2.4 Chemischer Aufbau des Holzes 6 3 Von der Zellstofffaser zur Nanocellulose 11 3.1 Nanocellulosetypen 11 3.2 Mikrofibrillierte Cellulose – MFC 14 3.3 Einsatzmöglichkeiten für MFC 14 3.3.1 Allgemeine Einsatzmöglichkeiten von MFC 14 3.3.2 Einsatz von MFC in der Papierherstellung 15 3.4 Herstellung von MFC 16 3.4.1 Allgemeine Herstellung von MFC 16 3.4.2 Herstellung von MFC im Extruder 18 3.5 Chemische Modifizierung/Vorbehandlung von Faserstoffen 20 3.5.1 Carboxymethylcellulose – CMC 20 3.5.2 TEMPO-Oxidierte Cellulose 22 3.5.3 Carboxymethylierte, fibrillierte Cellulose – CMFC 24 4 Theorie der Fällung und Kristallisation 25 4.1 Fällung und Kristallisation im Allgemeinen 25 4.2 Keim- und Partikelbildung 29 4.2.1 Änderung der freien Enthalpie bei der Keim- und Partikelbildung 29 4.2.2 Löslichkeit und Übersättigung 30 4.2.3 Keimbildungskinetik 34 4.2.4 Keimbildungs- und Wachstumsrate 37 4.3 Kristallwachstum 39 4.3.1 Diffusionskontrolliertes und einbaulimitiertes Wachstum 39 4.3.2 Modellansätze von LaMer und Ostwald 41 4.4 Mechanismen zur Beeinflussung von Fällungsreaktionen 43 5 Calciumcarbonat – Eigenschaften, Herstellung, Einsatz 45 5.1 Stoffsystem Calciumcarbonat 45 5.1.1 Eigenschaften und Vorkommen 45 5.1.2 Modifikationen und Kristallformen 47 5.1.3 Bildung der wasserfreien Phasen – Calcit, Aragonit und Vaterit 50 5.1.4 Möglichkeiten zur Steuerung der Modifikationen und Kristallformen 55 5.2 Herstellung von Calciumcarbonat 57 5.2.1 Allgemein 57 5.2.2 Natürliches Calciumcarbonat – GCC 58 5.2.3 Synthetisches Calciumcarbonat – PCC 59 5.2.3.1 Fällung aus Kalkmilch 59 5.2.3.2 Doppelaustauschreaktion 60 5.2.3.3 Weitere technische Fällungs-Methoden 61 5.3 Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.1 Allgemeine Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.2 PCC als funktioneller Füllstoff in der Papierherstellung 63 6 Calciumcarbonat-Fällung an Faseroberflächen 66 6.1 Motivation 66 6.2 Stand der Technik 67 6.2.1 Calciumcarbonat-Fällung an Faseroberflächen zur Hybridfüllstoff-Herstellung 67 6.2.2 Weitere Methoden zur Hybridfüllstoff-Herstellung bzw. zur Verbesserung der Faser-Füllstoff-Interaktion 72 6.3 Prozesse bei der Calciumcarbonat-Fällung an Faseroberflächen und in Hydrogelen 76 7 Problemstellung 81 7.1 Idee und Ziel der Arbeit 81 7.2 Hypothesen der Arbeit 84 8 Material und Methoden 85 8.1 Material 85 8.1.1 Verwendete Zellstoffe und deren Modifizierung 85 8.1.2 Fällungsreagenzien/-chemikalien 86 8.1.3 Weitere Chemikalien und Materialien 87 8.2 Laborfällung 87 8.2.1 Versuchsaufbau 87 8.2.2 Versuchsdurchführung 88 8.3 Extruderfällung 93 8.3.1 Versuchsaufbau 93 8.3.2 Versuchsdurchführung 95 8.4 Messmethoden zur Materialcharakterisierung 98 8.4.1 Überblick über alle angewandten Messmethoden zur Calciumcarbonat-, Faserstoff- sowie Composite-Charakterisierung 98 8.4.2 Themenspezifische und adaptierte Messmethoden sowie Probenpräparation 100 8.5 Anwendung der Composite in unterschiedlichen Produkten 107 8.5.1 Composite-Einsatz in der Laborblattbildung 107 8.5.2 Composite-Einsatz in weiteren Materialien 108 9 Ergebnisse und Diskussion der Fällungsexperimente 111 9.1 Untersuchungen zur Steuerung der Doppelaustauschreaktion zur reinen Calciumcarbonat-Fällung im Labor 111 9.2 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion im Labor 120 9.3 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion und Kalkmilchfällung im Extruder 132 9.4 Zusammenfassung der Ergebnisse 149 10 Anwendungsversuche 152 10.1 Definition möglicher Einsatzgebiete für mineralisierte Cellulosestrukturen 152 10.2 Einfluss der Composite in der Laborblattbildung 154 10.3 Einfluss der Composite in anderen Materialien 159 10.4 Zusammenfassung der Ergebnisse 164 11 Zusammenfassung und Ausblick 166 Literaturverzeichnis 169 Anlagenverzeichnis 194 / This study presents a new approach for the production of hybrid fillers – composites of cellulose and precipitated calcium carbonate – for strength enhancement in paper as well as for applications beyond paper production (such as plastics as well as building fibre boards, filters or filter aids and foamforming products). The main focus was on the precipitation of CaCO3 via double exchange reaction with calcium halides (CaCl2) and alkali metal carbonates (mainly Na2CO3) onto chemically and mechanically modified fibrous materials in a twin screw extruder. The hypothesis underlying this PhD thesis was that it is possible to precipitate CaCO3 directly onto the fibres – through their altered charge properties after modification – by reactive extrusion, thus generating an irreversible attachment of the mineral filler to the cellulosic pulp. Reactive extrusion proved to be a promising method both, for the generation of carboxymethylated and fibrillated cellulose (CMFC) and for the in-situ precipitation of CaCO3 directly onto the CMFC for the production of fibre-reinforced fillers with optimised filler retention. Furthermore, it was investigated to what extent the CaCO3 morphology, crystal shape and size can be controlled by adjusting the reaction and process parameters and thus the resulting composite properties. In addition, the potential of the novel hybrid fillers in varying end-use applications – especially for increasing the strength of paper and improving the property profile of polypropylene – was demonstrated in application trials. The investigations showed that the functional fibre properties have a decisive influence on CaCO3 precipitation – both on the crystallisation and conversion processes – and thus on the resulting hybrid filler properties. In particular, the nucleation rate is reduced by the hydrogel-like surface of the CMFC and crystal growth is promoted, so that predominantly large CaCO3 crystals (≥ 3 µm) are formed on or in the hydrogel-like fibre surface. It was also shown that even with intensive mechanical treatment, up to 89 wt. % of the precipitated CaCO3 does not detach from the CMFC and is therefore irreversibly attached. This leads to an improvement in CaCO3 retention in laboratory sheet formation from 62 wt. % to 80 wt. % for hardwood pulp (BEKP) and from 38 wt. % to 91 wt. % for softwood pulp (NBSK). Furthermore, it could be shown that the hybrid fillers contribute to an increase in strength (tensile index) of 1.5 times for NBSK (16.4 Nm/g) and 2.1 times for BEKP laboratory sheets (26.2 Nm/g). This thesis work illustrates that reactive extrusion is an innovative and sustainable process for composite production and that the novel hybrid fillers promise potential for versatile use in varying materials.:Abstract I Zusammenfassung II Danksagung III Eidesstattliche Erklärung IV Abbildungsverzeichnis VIII Abkürzungsverzeichnis XIV Formelzeichen und Indizes XVIII Formelverzeichnis XXII Normen- und Methodenverzeichnis XXIII Tabellenverzeichnis XXVI 1 Einleitung 1 2 Allgemeiner Aufbau von Zellstofffasern 3 2.1 Holzquelle Wald 3 2.2 Anatomie des Holzes 3 2.3 Morphologische Eigenschaften und chemische Zusammensetzung der Zellwand 5 2.4 Chemischer Aufbau des Holzes 6 3 Von der Zellstofffaser zur Nanocellulose 11 3.1 Nanocellulosetypen 11 3.2 Mikrofibrillierte Cellulose – MFC 14 3.3 Einsatzmöglichkeiten für MFC 14 3.3.1 Allgemeine Einsatzmöglichkeiten von MFC 14 3.3.2 Einsatz von MFC in der Papierherstellung 15 3.4 Herstellung von MFC 16 3.4.1 Allgemeine Herstellung von MFC 16 3.4.2 Herstellung von MFC im Extruder 18 3.5 Chemische Modifizierung/Vorbehandlung von Faserstoffen 20 3.5.1 Carboxymethylcellulose – CMC 20 3.5.2 TEMPO-Oxidierte Cellulose 22 3.5.3 Carboxymethylierte, fibrillierte Cellulose – CMFC 24 4 Theorie der Fällung und Kristallisation 25 4.1 Fällung und Kristallisation im Allgemeinen 25 4.2 Keim- und Partikelbildung 29 4.2.1 Änderung der freien Enthalpie bei der Keim- und Partikelbildung 29 4.2.2 Löslichkeit und Übersättigung 30 4.2.3 Keimbildungskinetik 34 4.2.4 Keimbildungs- und Wachstumsrate 37 4.3 Kristallwachstum 39 4.3.1 Diffusionskontrolliertes und einbaulimitiertes Wachstum 39 4.3.2 Modellansätze von LaMer und Ostwald 41 4.4 Mechanismen zur Beeinflussung von Fällungsreaktionen 43 5 Calciumcarbonat – Eigenschaften, Herstellung, Einsatz 45 5.1 Stoffsystem Calciumcarbonat 45 5.1.1 Eigenschaften und Vorkommen 45 5.1.2 Modifikationen und Kristallformen 47 5.1.3 Bildung der wasserfreien Phasen – Calcit, Aragonit und Vaterit 50 5.1.4 Möglichkeiten zur Steuerung der Modifikationen und Kristallformen 55 5.2 Herstellung von Calciumcarbonat 57 5.2.1 Allgemein 57 5.2.2 Natürliches Calciumcarbonat – GCC 58 5.2.3 Synthetisches Calciumcarbonat – PCC 59 5.2.3.1 Fällung aus Kalkmilch 59 5.2.3.2 Doppelaustauschreaktion 60 5.2.3.3 Weitere technische Fällungs-Methoden 61 5.3 Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.1 Allgemeine Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.2 PCC als funktioneller Füllstoff in der Papierherstellung 63 6 Calciumcarbonat-Fällung an Faseroberflächen 66 6.1 Motivation 66 6.2 Stand der Technik 67 6.2.1 Calciumcarbonat-Fällung an Faseroberflächen zur Hybridfüllstoff-Herstellung 67 6.2.2 Weitere Methoden zur Hybridfüllstoff-Herstellung bzw. zur Verbesserung der Faser-Füllstoff-Interaktion 72 6.3 Prozesse bei der Calciumcarbonat-Fällung an Faseroberflächen und in Hydrogelen 76 7 Problemstellung 81 7.1 Idee und Ziel der Arbeit 81 7.2 Hypothesen der Arbeit 84 8 Material und Methoden 85 8.1 Material 85 8.1.1 Verwendete Zellstoffe und deren Modifizierung 85 8.1.2 Fällungsreagenzien/-chemikalien 86 8.1.3 Weitere Chemikalien und Materialien 87 8.2 Laborfällung 87 8.2.1 Versuchsaufbau 87 8.2.2 Versuchsdurchführung 88 8.3 Extruderfällung 93 8.3.1 Versuchsaufbau 93 8.3.2 Versuchsdurchführung 95 8.4 Messmethoden zur Materialcharakterisierung 98 8.4.1 Überblick über alle angewandten Messmethoden zur Calciumcarbonat-, Faserstoff- sowie Composite-Charakterisierung 98 8.4.2 Themenspezifische und adaptierte Messmethoden sowie Probenpräparation 100 8.5 Anwendung der Composite in unterschiedlichen Produkten 107 8.5.1 Composite-Einsatz in der Laborblattbildung 107 8.5.2 Composite-Einsatz in weiteren Materialien 108 9 Ergebnisse und Diskussion der Fällungsexperimente 111 9.1 Untersuchungen zur Steuerung der Doppelaustauschreaktion zur reinen Calciumcarbonat-Fällung im Labor 111 9.2 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion im Labor 120 9.3 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion und Kalkmilchfällung im Extruder 132 9.4 Zusammenfassung der Ergebnisse 149 10 Anwendungsversuche 152 10.1 Definition möglicher Einsatzgebiete für mineralisierte Cellulosestrukturen 152 10.2 Einfluss der Composite in der Laborblattbildung 154 10.3 Einfluss der Composite in anderen Materialien 159 10.4 Zusammenfassung der Ergebnisse 164 11 Zusammenfassung und Ausblick 166 Literaturverzeichnis 169 Anlagenverzeichnis 194
8

Entwicklung einer Technologie zur langzeitstabilen Biologischen Reinigung schwermetallbelasteter Bergbauwässer

Deusner, Christian 04 October 2004 (has links) (PDF)
A new technology for biotechnological treatment of mine waters with both high concentrations of heavy metals and sulphate was developed. The technology is based on the technical coupling of microbially mediated hydrolysis, fermentation and microbial sulphate reduction in a self-stabilising process. Electron donor for sulphate reduction is supplied by degradation of a solid substrate (silage). Elimination of metals is primarily achieved by sulphide precipitation within the sulphate reduction zone. The organic compounds are either supplied by elution or by hydrolysis of polymeric compounds which was named active elution. The concept was realised as a two-phase process with (active) elution in the first phase (R1) and sulphate reduction and metal elimination in the second phase (R2). With this process setup the supply of sufficient amounts of electron donor in R1, a stable and effective sulphate reduction yield as the basis of metal elimination in R2 and a stable separation of microbial processes in R1 and R2 was achieved at hydraulic retention times of 69 h in R1 and 40 h in R2. Almost complete elimination of heavy metals was achieved from wastewaters with 0.2 mM Ni2+, Cu2+, Zn2+, Fe2+ and Mn2. A structurised mathematical model describing the two-phase process was developed on the basis of literature values and tested with data from continuous experiments. Microbial processes were significantly influenced in the presence of precipitated heavy metal sulfides. The effect was dependent on both the bound metal (Ni2+ or Fe2+) and the relative distance between sediment and biomass. / Es wurde eine neuartige Technologie zur biotechnologischen Reinigung von schwermetallbelasteten, sulfathaltigen Bergbauwässern entwickelt. Die Technologie basiert auf der technischen Kopplung von mikrobiell vermittelter Hydrolyse, Fermentation und mikrobieller Sulfatreduktion in einem selbststabilisierenden Prozess, wobei aus Abbau eines festen Substanzgemisches (Silage) Elektronendonor zur Sulfatreduktion bereitgestellt wird. Die Schwermetallelimination erfolgt vorrangig durch sulfidische Fällung, die technisch einstufig mit der mikrobiellen Sulfatreduktion realisiert wurde. Die organischen Verbindungen wurden durch Elution bereitgestellt bzw. durch hydrolytischen Abbau von polymeren Verbindungen. Hierfür wurde der Begriff der ?Aktiven Elution? geprägt. Die Konzeption wurde technisch zweistufig umgesetzt. In der ersten Stufe (R1) erfolgt die (Aktive) Elution, in der zweiten Stufe (R2) erfolgen Sulfatreduktion und Schwermetallelimination. Mit der verfahrenstechnischen Umsetzung wurde die Bereitstellung einer ausreichenden Menge an Elektronendonor in R1, eine effektive und stabile Sulfatreduktionsausbeute als Bedingung der Schwermetallelimination in R2 und eine weitgehende Trennung der mikrobiellen Prozesse in R1 und R2 bei Verweilzeiten von 69 h in R1 und 40 h in R2 erreicht. Bei Behandlung von wässrigen Lösungen mit 0,2 mM Ni2+, Cu2+, Zn2+, Fe2+ und Mn2+ konnte eine nahezu vollständige Elimination der Schwermetalle aus der Lösung erreicht werden. Es wurde ein strukturiertes mathematisches Modell für den zweistufigen Prozess auf der Basis von Literaturangaben entwickelt und anhand der kontinuierlichen Laborversuche überprüft. Es wurde ein erheblicher Einfluss schwermetallsulfidischer Präzipitate auf die mikrobiellen Prozesse festgestellt. Dabei wurde dieser Einfluss in Abhängigkeit von der Art der gebundenen Metallionen (Ni2+ oder/und Fe2+) und in Abhängigkeit der relativen räumlichen Anordnung von Sediment und Biomasse festgestellt.
9

Entwicklung einer Technologie zur langzeitstabilen Biologischen Reinigung schwermetallbelasteter Bergbauwässer

Deusner, Christian 27 May 2004 (has links)
A new technology for biotechnological treatment of mine waters with both high concentrations of heavy metals and sulphate was developed. The technology is based on the technical coupling of microbially mediated hydrolysis, fermentation and microbial sulphate reduction in a self-stabilising process. Electron donor for sulphate reduction is supplied by degradation of a solid substrate (silage). Elimination of metals is primarily achieved by sulphide precipitation within the sulphate reduction zone. The organic compounds are either supplied by elution or by hydrolysis of polymeric compounds which was named active elution. The concept was realised as a two-phase process with (active) elution in the first phase (R1) and sulphate reduction and metal elimination in the second phase (R2). With this process setup the supply of sufficient amounts of electron donor in R1, a stable and effective sulphate reduction yield as the basis of metal elimination in R2 and a stable separation of microbial processes in R1 and R2 was achieved at hydraulic retention times of 69 h in R1 and 40 h in R2. Almost complete elimination of heavy metals was achieved from wastewaters with 0.2 mM Ni2+, Cu2+, Zn2+, Fe2+ and Mn2. A structurised mathematical model describing the two-phase process was developed on the basis of literature values and tested with data from continuous experiments. Microbial processes were significantly influenced in the presence of precipitated heavy metal sulfides. The effect was dependent on both the bound metal (Ni2+ or Fe2+) and the relative distance between sediment and biomass. / Es wurde eine neuartige Technologie zur biotechnologischen Reinigung von schwermetallbelasteten, sulfathaltigen Bergbauwässern entwickelt. Die Technologie basiert auf der technischen Kopplung von mikrobiell vermittelter Hydrolyse, Fermentation und mikrobieller Sulfatreduktion in einem selbststabilisierenden Prozess, wobei aus Abbau eines festen Substanzgemisches (Silage) Elektronendonor zur Sulfatreduktion bereitgestellt wird. Die Schwermetallelimination erfolgt vorrangig durch sulfidische Fällung, die technisch einstufig mit der mikrobiellen Sulfatreduktion realisiert wurde. Die organischen Verbindungen wurden durch Elution bereitgestellt bzw. durch hydrolytischen Abbau von polymeren Verbindungen. Hierfür wurde der Begriff der ?Aktiven Elution? geprägt. Die Konzeption wurde technisch zweistufig umgesetzt. In der ersten Stufe (R1) erfolgt die (Aktive) Elution, in der zweiten Stufe (R2) erfolgen Sulfatreduktion und Schwermetallelimination. Mit der verfahrenstechnischen Umsetzung wurde die Bereitstellung einer ausreichenden Menge an Elektronendonor in R1, eine effektive und stabile Sulfatreduktionsausbeute als Bedingung der Schwermetallelimination in R2 und eine weitgehende Trennung der mikrobiellen Prozesse in R1 und R2 bei Verweilzeiten von 69 h in R1 und 40 h in R2 erreicht. Bei Behandlung von wässrigen Lösungen mit 0,2 mM Ni2+, Cu2+, Zn2+, Fe2+ und Mn2+ konnte eine nahezu vollständige Elimination der Schwermetalle aus der Lösung erreicht werden. Es wurde ein strukturiertes mathematisches Modell für den zweistufigen Prozess auf der Basis von Literaturangaben entwickelt und anhand der kontinuierlichen Laborversuche überprüft. Es wurde ein erheblicher Einfluss schwermetallsulfidischer Präzipitate auf die mikrobiellen Prozesse festgestellt. Dabei wurde dieser Einfluss in Abhängigkeit von der Art der gebundenen Metallionen (Ni2+ oder/und Fe2+) und in Abhängigkeit der relativen räumlichen Anordnung von Sediment und Biomasse festgestellt.

Page generated in 0.4219 seconds