• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating strategies for integrating bacterial cells into a biosensor designed to detect electrophilic toxins

Linares, Katherine Anne 14 September 2004 (has links)
To improve the process stability of wastewater treatment plants, the construction of a whole-cell bacterial biosensor is explored to harness the natural stress response of the bacterial cells. The stress response selected in this work is the glutathione-gated potassium efflux (GGKE) system, which responds to electrophilic stress by effluxing potassium from the interior to the exterior of the cell. Thus, the bulk potassium in solution can be monitored as an indicator of bacterial stress. By utilizing this stress response in a biosensor, the efflux of potassium can be correlated to the stress response of the immobilized culture, providing an early warning system for electrophilic shock. This type of shock is a causative factor in many process upset events in wastewater treatment plants, so the application of the sensor would be an early warning device for such plants. The research conducted here focused on the biological element of the biosensor under development. Three immobilization matrices were explored to determine the cell viability and potassium efflux potential from immobilized cells: a calcium alginate, a photopolymer, and a thermally reversible gel. The calcium alginate was unstable, and dissolved after five days, such that the long-term impact of immobilization on the cells could not be determined in the matrix. The photopolymer resulted in very low actvity and viability of immobilized cellsOf the three matrices tested, indicating that the composition of the polymer was toxic to the cells. Of the matrices tested, the thermally-reversible gel showed the best response for further study, in that the matrix did not inhibit cell activity or potassium efflux. / Master of Science
2

Elucidating the Role of Toxin-Induced Microbial Stress Responses in Biological Wastewater Treatment Process Upset

Bott, Charles Briddell 16 April 2001 (has links)
The overall hypothesis of this work is that the physiological microbial stress response could serve as a rapid, sensitive, and mechanistically-based indicator of process upset in biological wastewater treatment systems that receive sporadic shock loads of toxic chemicals. The microbial stress response is a set of conserved and unique biochemical mechanisms that an organism activates or induces under adverse conditions, specifically for the protection of cellular components or the repair of damaged macromolecules. Using traditional immunochemical analysis techniques, the heat shock protein, GroEL, was found to be induced in activated sludge cultures exposed to perturbations of chemicals at all concentrations tested (cadmium, pentachlorophenol, and acetone) or heat stress. As total cadmium concentrations increased above 5 mg/L, there was a significant and consistent increase in effluent volatile suspended solids concentrations from activated sludge sequencing batch reactors relative to unstressed controls, but there was no additional increase in GroEL levels. Stress proteins may serve as sensitive and rapid indicators of mixed liquor toxicity which can adversely impact treatment process performance, but GroEL may not be a good candidate protein for this purpose due to the lack of a dose/response relationship. Additionally, production of stress proteins did not explain the significant deflocculation upsets that were characteristic of many of the industrially-relevant chemicals tested, including pentachlorophenol and cadmium. Although the purpose of stress response mechanisms is protective at the cellular level, the effect may be disruptive at the macroscopic level in engineered bioreactor systems. The goal of the second research phase was to determine whether the bacterial glutathione-gated, electrophile-induced potassium efflux system is responsible for deflocculation observed due to shock loads of toxic electrophilic (thiol reactive) chemicals. The results indicate significant K+ efflux from the activated sludge floc structure to the bulk liquid in response to shock loads of 1-chloro-2,4-dinitrobenzene (CDNB), N-ethylmaleimide (NEM), 2,4-dinitrotoluene (DNT), 1,4-benzoquinone (BQ), and Cd2+ to a bench-scale sequencing batch reactor (SBR) system. In most cases, the stressor chemicals caused significant deflocculation, as measured by an increase in effluent volatile suspended solids (VSS), at concentrations much less than that required to reduce the maximum specific oxygen uptake rate by 50% (IC50). This suggests that electrophile-induced activated sludge deflocculation is caused by a protective bacterial stress mechanism (as hypothesized) and that the upset event may not be detectable by aerobic respirometry. More importantly, the amount of K+ efflux appeared to correlate well with the degree of deflocculation. The transport of other cations including sodium, calcium, magnesium, iron, and aluminum, either to or from the floc structure, was negligible as compared to K+ efflux. In bench-scale SBRs, it was also determined that the K+ efflux occurred immediately (within minutes) after toxin addition and then was followed by an increase in effluent turbidity. K+ efflux and deflocculation responses were similar for bench-scale SBRs and continuous-flow reactor systems, indicating that the periods of elevated exogenous substrate levels typical in SBR systems are not required to activate electrophile-induced K+ efflux or deflocculation. This also suggests that the initial and rapid efflux of K+ immediately following electrophile addition is the factor that leads to deflocculation, not the increase in bulk liquid K+. Sphingomonas capsulata, a bacterium consistent with that found in biological wastewater treatment systems, Escherichia coli K-12, and activated sludge cultures exhibited very similar dynamic efflux/uptake/efflux responses due to the electrophilic stressors, NEM and CDNB, and the thiol reducing agent, dithiothreitol (DTT). The polyether ionophore antibiotic, nigericin, was used to artificially stimulate K+ efflux from S. capsulata and activated sludge cultures. Thus, glutathione-gated K+ efflux (GGKE) activity may cause K+ release from the cytoplasm of activated sludge bacteria into the floc structure and extracellular polymeric substances (EPS) and then diffusion-limited transport into the bulk liquid. It was not possible to resolve the effect of the GGKE system on changes in bulk liquid or floc-associated pH. However, calculations indicate that the localized K+ concentration within the floc structure immediately after chemical stress is consistent with that known to induce floc disruption as a result of KCl addition. Using alkaline phosphatase as a periplasmic marker as well as fluorescent membrane-permeable and impermeable nucleic acid stains, it was determined that a negligible amount of the K+ efflux response was due to lysis of activated sludge microorganisms. The current results are very promising and are the first to suggest that activated sludge upset (i.e. deflocculation) may be caused by a specific protective stress response in bacteria. / Ph. D.
3

Structural and Functional Analysis of Proteins involved in Microbial Stress Tolerance and Virulence

Bangera, Mamata January 2015 (has links) (PDF)
The genus Salmonella consists of pathogenic gram negative organisms which infect intestines of birds, animals and humans. They are the causative agents of salmonellosis which is characterised by diarrhoea, nausea, fever and abdominal cramps. If not treated in time, salmonellosis can also be fatal. Salmonella genus is divided into two species Salmonella bongori and Salmonella enterica. Salmonella enterica is further divided into six subspecies out of which the subspecies enterica has many of the pathogenic serovars of this species. Salmonella typhimurium is a server in the subspecies enterica of Salmonella enterica species. Transmission of salmonellosis takes place through contaminated food and water. When the organism enters a host, it encounters a range of hostile environments such as acidic pH, lack of oxygen as well as immune response of the host. In order to establish infection, the bacterium needs to survive under stressful conditions and propagate itself. Various proteins are induced in cells under unfavourable conditions that protect them in such situations. One such group of proteins belongs to the Universal Stress Protein (USP) family. Universal Stress Proteins are a set of proteins induced in organisms when it is exposed to a variety of environmental insults including heat shock, nutrient starvation, presence of toxic compounds, etc. Although survival in adverse conditions is mediated by induction of this group of proteins, the precise mechanism of cellular protection has not been elucidated yet. The functional role of a protein is directly related to its three-dimensional structure and hence important insights can be gained regarding the role of these proteins by determining their structures. The structures of two Universal Stress Proteins from S. typhimurium; a single domain protein, YnaF and another tandem USP domain protein, YdaA were determined by X-ray crystallography and biochemical analysis was carried out on them. Guided by structure, plausible roles for both the proteins in stress tolerance of S. typhimurium have been proposed. Additionally, work was also carried out on phosphomannose isomerise from S. typhimurium. Phosphomannose isomerase is a housekeeping enzyme which catalyses the interconversion of mannose-6-phosphate and fructose-6-phosphate. Mannose is important for mannosylation of various lipids and proteins which form an important component of bacterial and fungal cell walls. Presence of a functional phosphomannose isomerise enzyme is important as it helps the organism survive adverse conditions by forming a strong cell wall which shields it from harmful environments. Moreover, phosphomannose isomerase was also found to be essential for virulence of Leishmania mexicana and Cryptococcus neoformans. The structure of phosphomannose isomerase from S. typhimurium was determined in our laboratory in the year 2009. However, in the earlier studies, the catalytically important residues had not been identified and mechanism of isomerisation was not established. Structural analysis, site directed mutagenesis and biochemical assays were used to identify key residues in the active site of StPMI. Identification of these residues might help in deciphering the catalytic mechanism which will eventually be useful to develop inhibitors that arrest the growth of Salmonella as well as other microorganisms. The work reported in this thesis describes the efforts made to enhance our understanding of functional aspects of the two Universal Stress Proteins, YnaF and YdaA and phosphomannose isomerase from S. typhimurium. Chapter 1 begins with a brief introduction to the kinds of unfavourable environments encountered by microorganisms and their strategies of adaptation. This is followed by a review of the literature on Universal Stress Proteins, which are induced in many organisms in response to arrest of or perturbations in the growth rate. Structural, biochemical and evolutionary aspects of members of the family have also been discussed. Subsequently, a brief description of the earlier work carried out on another enzyme important in stress tolerance, phosphomannose isomerase, has been documented. A detailed account of mechanisms of isomerisation carried out by aldose ketose isomerases and identification of important strategies for determination of mechanism of phosphomannose isomerase catalysed reaction have then been provided. The chapter ends with a summary of aims and objectives of the present work. Chapter 2 describes the various experimental techniques and computational methods used during the course of this thesis work. Isolation of plasmids, overexpression and purification of protein, site directed mutagenesis, biochemical assays, crystallisation of proteins, X ray diffraction data collection form a part of the experimental aspect and have been described in detail. Brief descriptions of the programs used and principles behind computational methods used for structure determination (including data processing, phasing, model building and refinement), validation and analysis have also been provided. Chapter 3 includes the structural and functional studies carried out on YdaA, a tandem USP domain protein from S. typhimurium. Expression, purification, crystallisation and structure determination of YdaA in its native and ADP bound forms are described in the chapter. Biochemical assays with radiolabelled ATP showed that YdaA was an ATPase. The crystal structure of YdaA complexed with ATP revealed the presence of ADP (hydrolysis product of ATP) only in the C-terminal domain of the protein. Based on structural analysis and presence of ATP binding motif in the C-terminal domain, it could be hypothesized that ATP hydrolysis activity of the protein is confined to the C-terminal domain of the protein. The N-terminal domain of the protein was found to play another interesting role. A zinc binding site could be identified in the N terminal domain based on structural analysis and elemental X-ray absorption studies done at the synchrotron. Site directed mutagenesis and biochemical experiments suggested that zinc binding in the N-terminal domain was not related to ATPase activity of the C-terminal domain. Additionally, an intermediate of lipid A biosynthesis pathway UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetyl glucosamine was found bound to the N-terminal domain of YdaA. Lipid A is the membrane anchor of polysaccharides in the outer membrane of gram negative organisms and the intermediate occurs at the committed step of the pathway. However, no similarities could be identified between YdaA and members of the relevant biosynthetic pathway. Therefore, YdaA is unlikely to play a catalytic role in the same pathway but can function as a carrier molecule. A plausible link between the N- and C-terminal domains of YdaA could be identified by structural analysis. Many catalytically suitable residues from the N-terminal domain were found to be close to the β-phosphate of ADP bound to the C-terminal domain. Hence YdaA was identified to be a zinc binding ATPase which might play some yet unidentified role in lipid A biosynthesis pathway. Chapter 4 describes the attempts made towards understanding the functional role of YnaF, a single domain USP from S. typhimurium. A description of the expression, purification, crystallisation and X ray diffraction techniques used for structure determination of YnaF and its single site mutant have been provided in detail. Gel filtration, dynamic light scattering studies and the crystal structure determination of YnaF showed a tetrameric organisation of four USP protomers stabilised in the centre by chloride ions. Additionally, YnaF crystallised with a bound ATP even though ATP was not included in the crystallisation cocktail. Biochemical assays on YnaF with radiolabelled ATP showed that it was inactive with respect to ATP hydrolysis. When selected mutations that disrupt chloride binding were made, YnaF was converted to an active ATPase. The crystal structure of the mutant complexed with an ATP analogue revealed key differences at the active site in comparison with that of the wild type and allowed identification of residues that might be important for ATP hydrolysis in this group of proteins. Hence YnaF might play the role of a sensor protein in some signal transduction pathway involving chloride ions in bacteria. A structure based analysis and comparison of USPs from the Protein Data Bank with the structures of YnaF and YdaA is summarised at the end of this chapter. Chapter 5 describes the efforts carried out towards determination of mechanism of isomerisation catalysed by phosphomannose isomerise (PMI). Earlier reports suggest that the enzyme catalyses the reversible isomerisation of mannose-6-phosphate and fructose-6-phosphate via formation of a cis-enediol intermediate. The structure of phosphomannose isomerase from S. typhimurium has been reported by our laboratory. The enzyme is a monomer with three domains; a catalytic domain, a carboxy terminal domain and an α-helical domain. Residues from the catalytic domain were found to coordinate a zinc ion. Overexpression, purification, co crystallisation experiments and soaking studies carried out on crystals of PMI and its single site mutants are outlined in this chapter. The structure of a complex of PMI with mannose-6-phosphate at pH 7.0 revealed the presence of a blob of density close to the zinc binding site which was confirmed to be the active site by analysis of conservation of residues in the site. Based on site directed mutagenesis, activity studies and analysis of structure of PMI, zinc was identified to play an important role in maintaining the structural integrity of the active site. Electrostatic surface analysis of the structure of PMI revealed that the zinc ion might also play the role of anchoring phosphate moiety of the substrate in a highly negatively charged active site pocket. Activity assays following site directed mutagenesis studies eliminated the role of Glu264 in catalysis and implicated two lysines, Lys86 and Lys132 as the possible base in the reaction. The plausible role of a highly conserved residue Arg274 was also proposed based on comparison of structures of wild type and mutant PMIs. The future prospects of the work are briefly discussed towards the end of the thesis. Further experiments and analysis required to obtain better understanding of the functions of these proteins have been discussed. The Appendix section describes extensive crystallisation attempts that were carried out on the enzyme sorbitol-6-phosphate-dehydrogenase from S. typhimurium which catalyses the isomerisation reaction between sorbitol-6-phosphate and glucose-6-phosphate using NADPH as the cofactor. Needle shaped crystals were obtained which diffracted to a poor resolution of 7-8 Å at our in house X ray facility. Attempts to improve the quality of the crystals like co crystallisation with substrate and its analogues, soaking in various compounds and seeding are briefly described. The following manuscripts based on work described in this thesis have been published or will be communicated for publication. 1. Structural and functional analysis of two universal stress proteins YdaA and YnaF from Salmonella typhimurium: possible roles in microbial stress tolerance. Bangera M., Panigrahi R., Sagurthi S.R., Savithri H.S., Murthy M.R.N. Journal of Structural Biology, 2015 Mar; 189 (3): 238-50. 2. Structural and functional insights into phosphomannose isomerise: role of zinc and catalytic residues. Bangera M., Savithri H.S., Murthy M.R.N. Manuscript under preparation
4

Effects of cow urine and its constituents on soil microbial populations and nitrous oxide emissions

Bertram, Janet January 2009 (has links)
New Zealand’s 5.3 million strong dairy herd returns approximately 106 million litres of urine to pasture soils daily. The urea in that urine is rapidly hydrolysed to ammonium (NH₄⁺), which is then nitrified, with denitrification of nitrate (NO₃⁻) ensuing. Nitrous oxide (N₂O), a potent greenhouse gas (GHG), is produced via nitrification and denitrification, which are enzyme-catalysed processes mediated by soil microbes. Thus microbes are linked intrinsically to urine patch chemistry. However, few previous studies have investigated microbial dynamics in urine patches. Therefore the objective of these four experiments was to investigate the effects on soil microbial communities of cow urine deposition. Methods used included phospholipid fatty acid (PLFA) analyses of microbial community structure and microbial stress, dehydrogenase activity (DHA) assays measuring microbial activity, and headspace gas sampling of N₂O, ammonia (NH₃) and carbon dioxide (CO₂) fluxes. Experiment 1, a laboratory study, examined the influence of soil moisture and urinary salt content on the microbial community. Both urine application and high soil moisture increased microbial stress, as evidenced by significant changes in PLFA trans/cis and iso/anteiso ratios. Total PLFAs and DHA showed a short-term (< 1 week) stimulatory effect on microbes after urine application. Mean cumulative N₂O-N fluxes were 2.75% and 0.05% of the nitrogen (N) applied, from the wet (70% WFPS) and dry (35% WFPS) soils, respectively. Experiment 2, a field trial, investigated nutrient dynamics and microbial stress with plants present. Concentrations of the micronutrients, copper, iron and molybdenum, increased up to 20-fold after urine application, while soil phosphorus (P) concentrations decreased from 0.87 mg kg ⁻¹ to 0.48 mg kg⁻¹. Plant P was also lower in urine patches, but total PLFAs were higher, suggesting that microbes had utilised the available nutrients. Microbial stress again resulted from urine application but, in contrast to experiment 1, the fungal biomass recovered after its initial inhibition. Studies published during the course of this thesis reported that hippuric acid (HA) and its hydrolysis product benzoic acid (BA) significantly reduced N₂O-N emissions from synthetic cow urine, thus experiment 3 investigated this effect using real cow urine. Cumulative N₂O-N fluxes were 16.8, 5.9 and 4.7% of N applied for urine (U) alone, U+HA and U+BA, respectively. Since NH₃-N volatilisation remained unchanged, net gaseous N emissions were reduced. Trends in total PLFAs and microbial stress were comparable to experiment 1 results. Experiment 4 studied HA effects at different temperatures and found no inhibition of N₂O-N fluxes from HA-amended urine. However, mean cumulative N₂O-N fluxes were reduced from 7.6% of N applied at 15–20°C to 0.2% at 5–10°C. Total cumulative N emissions (N₂O-N + NH₃-N) were highest at 20°C (17.5% of N applied) and lowest at 10°C (9.8% of N applied). Microbial activity, measured as potential DHA, increased with increasing temperature. This work has clearly shown that the stimulation and inhibition of the soil microbial community by urine application are closely linked to soil chemistry and have significant impacts not only on soil nutrient dynamics but also on N₂O-N emissions and their possible mitigation.

Page generated in 0.0794 seconds