• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 10
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sedimentary structural indicators of Arctic terrestrial and aquatic processes

Chutko, Krystopher John 28 May 2008 (has links)
Annually and subannually laminated lacustrine sediments potentially contain a wide range of information that can be interpreted for paleoenvironmental reconstructions. These laminae are produced by the physical and biological processes that operate in the lake and in the surrounding terrestrial environment. However, identification of the influences that control laminae production may not be straightforward, and other processes may subtly influence the overall depositional sequence. This thesis examines two different depositional environments on Colin Archer Peninsula, Devon Island, Canada, with the objective of identifying the factors that influence subannual sediment deposition and how the resultant sedimentary structures can be used as indicators of paleoenvironmental conditions. In proglacial Lake R, clastic sediment deposition is controlled primarily by subannual meteorological conditions. Periods of positive air temperature or large rainfall events produce discernable laminae that, when combined, form a varve sequence. However, overarching geomorphic controls influence the delivery of sediment to the lake and may reduce or enhance the hydrometeorological signal contained in the varves. An additional influence for calibration of the varve record to meteorological observations is the role that melt season thermal inversions have on temperature extrapolation in the High Arctic. Meteorological stations at sea level may not be representative of the surrounding region, thereby reducing the accuracy of vertical temperature estimation. Investigation of the inversions in the central Canadian High Arctic demonstrated that melt season inversions are common and increased inversion frequency may potentially have influenced enhanced glacial melt since the late 1980s, with implications for proglacial lake sediment transport and deposition. In coastal Lake J, late Holocene sediments record a relatively unusual accumulation of microbially induced sedimentary structures (MISS). Such a record has not been previously described in the circum-Arctic, although they are known to exist elsewhere. These sediments are produced by the interaction between clastic sedimentation and cyanobacterial growth and production. Although chronological constraint could not be assigned with certainty to the record, statistical study of the laminated sequence suggested a dominant pattern that is plausibly annual. A heuristic model of annual sediment accumulation was developed in order to explore the potential for quasi-annual paleoenvironmental interpretations. / Thesis (Ph.D, Geography) -- Queen's University, 2008-05-22 09:55:12.184
2

Mitigation of Earthquake-Induced Soil Liquefaction via Microbial Denitrification: A Two-Stage Process

January 2016 (has links)
abstract: The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are either not applicable to sites near existing infrastructure, or are prohibitively expensive. Recently, laboratory studies have shown the potential for biogeotechnical soil improvement techniques such as microbially induced carbonate precipitation (MICP) to mitigate liquefaction potential in a non-disruptive manner. Multiple microbial processes have been identified for MICP, but only two have been extensively studied. Ureolysis, the most commonly studied process for MICP, has been shown to quickly and efficiently induce carbonate precipitation on particle surfaces and at particle contacts to improve the stiffness, strength, and dilatant behavior of liquefiable soils. However, ureolysis also produces copious amounts of ammonium, a potentially toxic byproduct. The second process studied for MICP, denitrification, has been shown to precipitate carbonate, and hence improve soil properties, much more slowly than ureolysis. However, the byproducts of denitrification, nitrogen and carbon dioxide gas, are non-toxic, and present the added benefit of rapidly desaturating the treated soil. Small amounts of desaturation have been shown to increase the cyclic resistance, and hence the liquefaction resistance, of liquefiable soils. So, denitrification offers the potential to mitigate liquefaction as a two-stage process, with desaturation providing short term mitigation, and MICP providing long term liquefaction resistance. This study presents the results of soil testing, stoichiometric modeling, and microbial ecology characterization to better characterize the potential use of denitrification as a two-stage process for liquefaction mitigation. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2016
3

Pore-scale Study of Bio-mineral and Bio-gas Formations in Porous Media

January 2019 (has links)
abstract: The potential of using bio-geo-chemical processes for applications in geotechnical engineering has been widely explored in order to overcome the limitation of traditional ground improvement techniques. Biomineralization via urea hydrolysis, referred to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown to increase soil strength by stimulating precipitation of calcium carbonate minerals, bonding soil particles and filling the pores. Microbial Induced Desaturation and Precipitation (MIDP) via denitrification has also been studied for its potential to stabilize soils through mineral precipitation, but also through production of biogas, which can mitigate earthquake induced liquefaction by desaturation of the soil. Empirical relationships have been established, which relate the amount of products of these biochemical processes to the engineering properties of treated soils. However, these engineering properties may vary significantly depending on the biomineral and biogas formation mechanism and distribution patterns at pore-scale. This research focused on the pore-scale characterization of biomineral and biogas formations in porous media. The pore-scale characteristics of calcium carbonate precipitation via EICP and biogenic gas formation via MIDP were explored by visual observation in a transparent porous media using a microfluidic chip. For this purpose, an imaging system was designed and image processing algorithms were developed to analyze the experimental images and detect the nucleation and growth of precipitated minerals and formation and migration mechanisms of gas bubbles within the microfluidic chip. Statistical analysis was performed based on the processed images to assess the evolution of biomineral size distribution, the number of precipitated minerals and the porosity reduction in time. The resulting images from the biomineralization study were used in a numerical simulation to investigate the relation between the mineral distribution, porosity-permeability relationships and process efficiency. By comparing biogenic gas production with abiotic gas production experiments, it was found that the gas formation significantly affects the gas distribution and resulting degree of saturation. The experimental results and image analysis provide insight in the kinetics of the precipitation and gas formation processes and their resulting distribution and related engineering properties. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2019
4

Performance of geopolymer concrete subjected to mineral acid corrosion and related to microbially-induced corrosion (MIC) of concrete in sewers

Dlamini, Mandla 26 July 2021 (has links)
worse than degradation at the crown of the sewer pipe. Furthermore, results from this study show that high resistance under the static acid corrosion exposure condition cannot be extended to mean high resistance under the erosion-corrosion exposure condition for some concrete mixes. In this study, the static HCl test and the dynamic HCl test were used to measure the resistance of concrete mixes under the static corrosion exposure condition and erosion-corrosion exposure condition respectively. However, concretes that exhibited high resistance to the erosion-corrosion exposure condition were consistent in exhibiting high resistance to the static corrosion exposure condition. This finding is consistent with the sequence of corrosion processes in MIC, wherein dissolution of the concrete components occurs before the precipitation of corrosion products. Therefore, it expected that high resistance in the dynamic acid test (i.e. resistance to dissolution) implies high resistance in the static test, which measures the combined resistance of dissolution and resistance emanating from corrosion products. Both static and dynamic acid corrosion tests revealed that the geopolymer concretes tested in this study outperformed PC and CAC concretes. Results from the static HCl test showed that GP-ferro-quartz concrete, the most durable concrete specimen, provided a 69-fold improvement in resistance when compared to PC-dolomite mixes (control #1) and a 4.72-fold improvement in resistance when compared to CAC-dolomite mixes (control #2). Results from the dynamic HCl test show that the GP-ferro-quartz mix provided a 180-fold increase in resistance when compared to the PC-dolomite mix and a 275-fold increase when compared to CAC-dolomite mix. The CACdolomite mix was found to have the lowest resistance to the erosive-corrosive exposure conditions of the dynamic HCl test. Thus, in terms of the concrete MIC resistance properties identified in this study, it is suggested that the CAC-dolomite mix had poor kinetic resistance to dissolution. However, under the static acid test (static corrosion exposure condition), the CAC-dolomite mix performed better than the PC-dolomite mix and GP-dolomite mix. CAC-dolomite concrete performed inferiorly only to the set of GP-siliceous-aggregate mixes in the static HCl test. The difference in the performance of CAC-dolomite concrete performance between the static and dynamic test is largely attributed to the formation of alumina gel, an acid corrosion product of CAC hardened paste, which envelopes the concrete specimen and reduces the rate of surface corrosion in the static HCl test. However, under v the dynamic HCl test, the gel layer is brushed off the surface of the concrete specimen rendering it ineffective in protecting the concrete specimen from corrosion. Previous research on the acid attack of concrete posits that the chemical make-up of concrete materials has a strong bearing on corrosion behaviour. To this end, various measures have been suggested such as the ratio of calcium to silicon (Ca/Si) in concrete. The approach utilised in this study was to calculate the “basicity value” which provides the ratio of major basic to acidic oxides found in the concrete. XRF analysis of the hardened cement pastes and the 5 aggregate types used in the experiments enabled the calculation of basicity values. The combined basicity value for concrete specimens was determined by proportionally summing (according to mass) the basicity values of the aggregate and hardened cement paste parts. A strongly correlated linear relationship between the basicity value of concrete and the corrosion rate from the dynamic HCl test was established. This empirical relationship warrants further investigation and verification, as it would, in principle provide a means to estimate the dissolution rate of concrete by calculating its basicity instead of undertaking laboratory acid tests. Basicity was also found to be useful in determining the corrosion compatibility of binder type and aggregate types. It was found that the difference between the basicity value of hardened cement paste and the basicity value of the aggregate was useful in determining the type and extent of preferential corrosion of a concrete specimen tested under the dynamic HCl test. For ease of reading, this difference was called the “basicity differential”. By visually assessing corroded concrete specimens from the dynamic HCl test, it is was possible to determine whether the hardened cement paste or aggregate component was preferentially corroded, and to gauge the extent of preferential corrosion visually. GP-ferro-quartz and GP-granite concretes had the lowest levels of preferential corrosion which corresponded to their low basicity differential values. In contrast, CAC-dolomite concrete had the highest basicity discrepancy which corresponded visually to a high preferential corrosion of the hardened cement paste. Mineralogical analysis via XRD, found that the hardened cement pastes of the three binder types consisted mainly of amorphous phases (>70%). The crystalline phase of the geopolymer hardened cement paste was mostly constituted by insoluble minerals such as mullite. This partially explains the higher corrosion resistance of geopolymer concretes. However, a more comprehensive explanation needs to include analysis of the amorphous phases, which fell outside the scope of this study. SEM analysis of HCl corroded geopolymer hardened cement paste found that fly ash spheres embedded within the geopolymer matrix were preferentially corroded. This indicates that fly ash content negatively affected the rate of corrosion of the geopolymer hardened cement paste. Furthermore, SEM analysis showed that the geopolymer matrix surrounding the fly ash spheres was relatively intact.
5

Bacterial Activity and Precipitation Heterogeneity during Biomediated Calcite Precipitation for Soil Improvement.

Akimana, Rosa Mystica January 2017 (has links)
No description available.
6

The Biological Sludge Reduction by anaerobic/aerobic cycling

Khanthongthip, Passkorn 15 April 2010 (has links)
An activated sludge system that incorporates a sidestream anaerobic bioreactor, called the Cannibal process, was the focus of this study. A prior study of this process (Novak et al., 2007) found that this system generated about 60% less solids than conventional activated sludge without any negative effects on the effluent quality. Although that study showed substantial solids reduction, questions remain concerning the specific mechanism(s) that account for the solids loss. In this study, the mechanisms that account for the loss of biological solids was the focus of the investigation. The first part of this study was conducted to evaluate those effects in terms of the role of iron in the influent wastewater and feeding patterns on the performance of the Cannibal system. It was found that the Cannibal system with high iron in the influent produced less biological solids than the system receiving low iron. The data also showed that the Cannibal system operated under fast feed (high substrate pressure) produced much less solids than the system with slow feed (low substrate pressure). The high substrate pressure was achieved by feeding the influent wastewater to the Cannibal system over a short time period so that the substrate concentration would initially peak and then decline as degradation occurred. This is called "fast feed." For low substrate pressure, the influent was added slowly so the substrate concentration remained low at all times. This is called "slow feed." Later, an attempt to increase substrate pressure in the slow feed Cannibal system was conducted by either manipulating the aeration patterns or adding a small reactor in front of the main reactor (selector). It was found that either interrupting aeration in the aerobic reactor or providing a small aerobic reactor in front of the main reactor resulted in an increase in solids reduction. The second part of this study was to investigate the mechanisms of floc destruction in the fast and the slow feed Cannnibal systems. It was found that higher accumulation of biopolymers (proteins and polysaccharides) occurred in the fast feed system and this was associated with a greater solids reduction in the fast than the slow feed system. In addition, more protein hydrolysis and more Fe(III)-reducing microorganism activity in the fast feed environment were found to be factors in higher solids reduction. The last part of this study was to investigate the structure of the Cannibal sludge flocs generated under the fast and the slow feed conditions. It was found that the readily biodegradable (1 kDa.) protein is larger in the flocs from the fast feed than the slow feed Cannibal system. This resulted in higher floc destruction in the fast feed condition. / Ph. D.
7

Mitigation of Microbially Induced Concrete Corrosion: Quantifying the Efficacy of Surface Treatments using ASTM Standards

Folorunso, Oluwafisayomi 03 August 2023 (has links)
No description available.
8

3D bioprinting of mineralizing cyanobacteria as novel approach for the fabrication of living building materials

Reinhardt, Olena, Ihmann, Stephanie, Ahlhelm, Matthias, Gelinsky, Michael 09 December 2024 (has links)
Living building materials (LBM) are gaining interest in the field of sustainable alternative construction materials to reduce the significant impact of the construction industry on global CO2 emissions. This study investigated the process of three-dimensional bioprinting to create LBM incorporating the cyanobacterium Synechococcus sp. strain PCC 7002, which is capable of producing calcium carbonate (CaCO3) as a biocement. Rheology and printability of biomaterial inks based on alginate-methylcellulose hydrogels containing up to 50 wt% sea sand were examined. PCC 7002 was incorporated into the bioinks and cell viability and growth was characterized by fluorescence microscopy and chlorophyll extraction after the printing process. Biomineralization was induced in liquid culture and in the bioprinted LBM and observed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and through mechanical characterization. Cell viability in the bioprinted scaffolds was confirmed over 14 days of cultivation, demonstrating that the cells were able to withstand shear stress and pressure during the extrusion process and remain viable in the immobilized state. CaCO3 mineralization of PCC 7002 was observed in both liquid culture and bioprinted LBM. In comparison to cell-free scaffolds, LBM containing live cyanobacteria had a higher compressive strength. Therefore, bioprinted LBM containing photosynthetically active, mineralizing microorganisms could be proved to be beneficial for designing environmentally friendly construction materials.
9

Enhanced Resolution of the Paleoenvironmental and Diagenetic Features of the Silurian Brassfield Formation

Oakley, Lisa Marie 25 May 2013 (has links)
No description available.
10

Kombinovaná metoda - Sanace podzemních vod za využití kombinace laktátu sodného a nanoželeza / Combined methods Remediation of groundwater by combination of sodium lactate and zero valent nanoiron

Stejskal, Vojtěch January 2014 (has links)
Vojtěch Stejskal - Diplomová práce 2014 - Přírodovědecká fakulta UK v Praze 4 ABSTRACT The thesis describes pilot applications of combined method - combination of sodium lactate and nanoparticles of zero-valent iron and their synergic effect. Two applications of combined method are described onto two geologically different sites - in Rožmitál pod Třemšínem and Spolchemie in Ústí nad Labem. First site is contaminated by polychlorinated biphenyls; contamination is situated in hydraulically well conducted porous media formed by weathered granodiorite. Main contaminants of Spolchemie site are trichloroethylene and tetrachloroethylene, contamination is situated in geologically heterogenous quaternary terrace of Bílina river. Effects of combined method on two different sites were compared and recommendations and conclusions were done. Part of the thesis is research of scientific articles and literature on topics: polychlorinated biphenyls, chlorinated ethylenes, in situ chemical reduction by sodium lactate and nanoiron, natural conditions of both sites, history of sites. In the thesis are also processed and evaluated results of geophysical investigation, changes of groundwater level and results of groundwater monitoring in view of the application of combined method on both sites.

Page generated in 0.0539 seconds