91 |
Thermo-responsive microcarriers based on poly(N-isopropylacrylamide)Zhang, J.N., Cui, Z.F., Field, R., Moloney, M.G., Rimmer, Stephen, Ye, H. 2015 April 1917 (has links)
No / Microcarrier cell culture systems provide an attractive alternative to the conventional monolayer cell culture for cell amplification, due to their high surface area-to-volume ratio. Unlike enzymatic methods for removing cells from microcarriers after cell culture, which can lead to irreversible damage of the cells, microcarriers which release cells by temperature adjustment have been developed. This was achieved by grafting a temperature-responsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), on the microcarrier surface. This review comprehensively presents various methods to prepare such thermo-responsive microcarriers based on PNIPAAm. These methods include the grafting-to technique, grafting-from technique, grafting-through technique, along with methods leading to PNIPAAm hydrogel beads, seeded polymerization, and non-covalent adsorption. The methods for controlling PNIPAAm grafting density, molecular weight and molecular architecture are also outlined. Further, the efficiency of cell attachment, proliferation and thermally-induced detachment of such thermo-responsive microcarriers is introduced and compared. (C) 2015 Elsevier Ltd. All rights reserved.
|
92 |
Optimised Mix designs for Self-Healing ConcreteHermawan, Harry 23 January 2024 (has links)
[ES] El hormigón es considerado como uno de los principales materiales de construcción más ampliamente utilizado en obras de infraestructuras. Su consideración como material de gran durabilidad y su ventajosa relación calidad-precio en comparación con otros materiales le ha hecho indispensable en la era moderna. Sin embargo, las fisuras son prácticamente inevitables en las estructuras de hormigón armado y se consideran como uno de sus puntos débiles, ya que comprometen la durabilidad de las infraestructuras y pueden generar condiciones inseguras. Hay muchas técnicas de reparación para sellar y sanar las fisuras, pero suelen ser costosas y requieren tiempo de intervención. Por esta razón, en los últimos años, se han realizado muchas investigaciones buscando alternativas para resolver estos problemas desarrollando una nueva generación de hormigones que se han denominado hormigones auto sanables. Se ha demostrado que las tecnologías de auto sanado cierran eficazmente las fisuras parcial o totalmente en un sistema cementoso. Sin embargo, los estudios a nivel del hormigón son todavía bastante limitados y en la mayoría de los casos las dosificaciones de la mezcla no fueron optimizados para la introducción de agentes de autosanado.
Del estudio amplio de la literatura se aprecia que la incorporación de agentes de autosanado no siempre conllevan efectos positivos en las propiedades del hormigón. En consecuencia, según el tipo de agente de sellado/sanado, será necesario optimizar la dosificación para garantizar que no reduce en alguna medida las prestaciones del hormigón colocado. Se analiza un amplio espectro de agentes de sanado/sellado: bacterias (BAC), adiciones cristalinas (CA), biomasas y agentes incorporados en micro o macro cápsulas. Previamente a su introducción en el hormigón se evaluó su compatibilidad con los materiales cementosos, como información básica para el diseño de las mezclas. La optimización del diseño de las mezclas de hormigón se llevó a cabo dependiendo del agente elegido y los objetivos de la investigación. Al utilizar CA, se encontró que aumentar su dosis y el contenido en cemento conducía a mejorar la eficiencia de curación (HE) y la de sellado (SE). La variación de la relación agua-cemento (a/c) no produjo una mejora notable de HE y SE. Se profundizó el conocimiento sobre las propiedades de adherencia entre las armaduras y la matriz de hormigón. La inclusión de agentes de sanado (BAC, CA, biomasas) conllevó la mejora de la adherencia con un crecimiento del 57% cuando se adiciona CA. Aunque la presencia de fisuras longitudinales redujo críticamente la adherencia, se logró una recuperación importante gracias a los efectos del auto sanado. Se encontraron efectos contrapuestos del uso de microcápsulas. Se confirma una reducción significativa de la resistencia mecánica y una mejora significativa del sellado. Los parámetros de diseño de mezcla se optimizaron para compensar la reducción de resistencia, con un programa experimental con diseño factorial completo. Por la estructura inerte, las macrocápsulas tiende a perturbar el empaquetamiento de los áridos. Para la optimización de la mezcla se desarrolló un modelo de empaquetamiento de partículas modificado para predecir la proporción de huecos de las mezclas de áridos y cápsulas.
Con todo, el resultado de esta investigación puede servir como guía para comprender la contribución de los parámetros de diseño de mezclas que afectan las propiedades de auto sanado, que potencialmente ayudará a investigadores e ingenieros a formular mezclas de hormigón para aplicaciones de auto sanado. / [CA] El formigó és considerat un dels principals materials de construcció més àmpliament utilitzat en obres d'infraestructures. La seua consideració com a material de gran durabilitat i la seua relació qualitat-preu avantatjosa en comparació amb altres materials l'ha fet indispensable en l'era moderna. Tot i això, les fissures són pràcticament inevitables en les estructures de formigó armat i es consideren com un dels seus punts febles, ja que comprometen la durabilitat de les infraestructures i poden generar condicions insegures. Hi ha moltes tècniques de reparació per segellar i curar les fissures, però solen ser costoses i requereixen temps d'intervenció. Per aquesta raó, en els darrers anys, s'han realitzat moltes investigacions buscant alternatives per resoldre aquests problemes desenvolupant una nova generació de formigons que s'han anomenat formigons auto sanables. S'ha demostrat que les tecnologies de auto curat tanquen eficaçment les fissures parcialment o totalment en un sistema de ciment. Tot i això, els estudis a nivell del formigó són encara força limitats i en la majoria dels casos les dosificacions no van ser optimitzades per a la introducció d'agents d'auto curat.
De l'estudi ampli de la literatura s'aprecia que la incorporació d'agents d'auto curat no sempre comporta efectes positius en les propietats del formigó. En conseqüència, segons el tipus d'agent de segellat/curat, cal optimitzar la dosificació per garantir que no redueix en alguna mesura les prestacions del formigó. S'analitza un ampli espectre d'agents de curat / segellament: bacteris (BAC), addicions cristal·lines (CA), biomassa i agents incorporats en micro o macro càpsules. Prèviament a la seua introducció al formigó es va avaluar la compatibilitat amb els conglomerants, com a informació bàsica per al disseny de mescles. L'optimització del disseny de les mescles de formigó es va dur a terme depenent de l'agent elegit i els objectius de la investigació. En utilitzar CA, es va trobar que augmentar-ne la dosi i el contingut en ciment conduïa a millorar l'eficiència de curació (HE) i la de segellat (SE). La variació de la relació aigua-ciment (a/c) no va produir una millora notable de HE i SE. S'aprofundí el coneixement sobre les propietats d'adherència entre les armadures i la matriu de formigó. La inclusió d'agents de curació (BAC, CA, biomassa) va comportar la millora de l'adherència amb un creixement del 57% quan s'hi afegeix CA. Tot i que la presència de fissures longitudinals va reduir críticament l'adherència, es va aconseguir una recuperació important gràcies als efectes del auto curat. S'han trobat efectes contraposats de l'ús de microcàpsules. Es confirma una reducció significativa de la resistència mecànica i una millora significativa del segellat. Els paràmetres de disseny de mescla es van optimitzar per compensar la reducció de resistència, amb un programa experimental amb disseny factorial complet. Per la seua estructura inert, les macrocàpsules tendeixen a pertorbar l'empaquetament dels àrids. Per optimitzar la mescles es va desenvolupar un model d'empaquetament de partícules modificat per predir la proporció de buits de les mescles d'àrids i càpsules.
Amb tot, el resultat d'aquesta investigació pot servir com a guia per comprendre la contribució dels paràmetres de disseny de barreges que afecten les propietats de auto curat, que potencialment ajudarà investigadors i enginyers a formular barreges de formigó per a aplicacions de auto curat. / [EN] Concrete has been widely used as a major material for infrastructure works. The durable character and the advantageous price-quality ratio compared to other materials have made concrete indispensable in the modern era. However, cracks in concrete structures are inevitable and are known as one of the inherent weaknesses of concrete, thereby making a threat to the durability of infrastructure which can lead to unsafe conditions. There are many repair techniques to seal and heal the cracks, but these approaches are costly and time-consuming. Therefore, during past years, many researchers searched for alternatives to solve these problems by developing a new generation of concrete namely self-healing concrete. Self-healing technologies have proven to effectively close cracks partially or fully in the cementitious system. However, studies on the concrete level are still rather limited and in most cases, the mix designs were not optimized for the introduction of healing agents.
Based on a comprehensive literature, it was revealed that not all healing/sealing agents induce positive effects to the concrete properties. Consequently, an optimization of the mix designs is necessary to guarantee that these agents do not negatively affect the concrete properties to some extent. In this PhD dissertation, a wide range of healing/sealing agents were utilized such as bacteria (BAC), crystalline admixture (CA), biomasses, micro- and macro-encapsulated agents. Prior to the introduction of these agents into the concrete, the compatibility between healing/sealing agents and cementitious materials was evaluated to serve as a basic input for designing the concrete mixtures.
The optimizations of concrete mix designs were carried out depending on the choice of the agents and the research objectives. When using CA, it was found that increasing the CA dosage and cement content in the mix design improved the healing efficiency (HE) and sealing efficiency (SE). Varying the water-cement ratio (w/c) did not give a remarkable improvement of HE and SE. A deep insight in the bond properties between the steel reinforcement and the self-healing concrete matrix was achieved. The inclusion of healing agents (i.e., BAC, CA, biomasses) possessed a bond strength improvement with the highest enhancement of 57% attained by the CA addition. Although the presence of a longitudinal crack critically reduced the bond strength, a bond restoration was achieved due to self-healing effects. Dual effects of using microcapsules were found, confirming a significant reduction of mechanical strength and a significant sealing improvement. Therefore, the mix design parameters were optimized to compensate the strength reduction via full factorial designs. With respect to the inert structure, the incorporation of macrocapsules tended to disturb the packing of aggregates. Hence, a modified particle packing model was developed to predict the voids ratio of aggregate-capsules mixtures.
All in all, the outcome of this PhD research can serve as a guidance to understand the contribution of mix design parameters affecting the self-healing concrete properties. This potentially helps researchers and engineers to formulate their concrete mixtures for self-healing application. / This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 860006. / Hermawan, H. (2023). Optimised Mix designs for Self-Healing Concrete [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202610
|
93 |
Investigation of Graphene Oxide Based Multilayered Capsules/Films for Drugs Delivery And Antimicrobial ApplicationsKurapati, Rajendra January 2013 (has links) (PDF)
Polyelectrolyte multilayer capsules fabricated by layer-by-layer (LbL) self-assembly technique consistsing of core-shell structure have emerged as potential drug delivery systems along with their applications in micro-reactors, cosmetics, vaccines and antimicrobial coatings. Various ligands and stimuli responsive entities can be incorporated into the core and shell of the capsules for targeted delivery and/or controlled release applications. Though multilayer capsules have been studied extensively as delivery systems, their utility for encapsulation of hydrophobic drugs and multiple drugs have not been explored in detail so far. Application of traditional polyelectrolyte capsules has several limitations, which renders them inapplicable for encapsulation of multiple drugs, hydrophobic drugs and also for releasing drugs on demand without addition of the external photothermal agents such as metal nanoparticles into the shells of the capsules.
Thus, in this thesis, an attempt has been made to develop novel multifunctional multilayered capsules to overcome the above mentioned limitations. We have formulated two novel methods to functionalize the core with cyclodextrin molecules and the shell of the capsules with two-dimensional material, graphene oxide (GO). The properties such as high surface area along with π bonds, broad NIR-absorption, superior photothermal conversion and antimicrobial activity of graphene oxide has been explored and it has been demonstrated that 2-D graphene oxide is unique compared to the regular polyelectrolytes. By functionalizing the shell of capsules with GO as one of the layer material, a simple and efficient way for encapsulating multiple drugs into core and shell of the capsules is achieved by utilizing the large surface area and amphiphilic nature of GO. Based on the unique optical absorption and photothermal conversion properties of GO, we have demonstrated a facile route for near-infrared (NIR)-laser triggered release with low laser power. In the second part, functionalization of the hollow core of the capsules has been functionalized using cylodextrin (CD)-incorporated CaCO3 porous sacrificial templates, where both CD-CaCO3 and CD-modified capsules are used as high efficient carriers for hydrophobic drugs. In the third part, synergistic antimicrobial therapy was achieved using composite graphene oxide/polymer LbL films by combining the intrinsic antimicrobial activity and photothermal conversion ability of graphene oxide and the results depicted superior antimicrobial activity towards E. coli. These composite films also can be used as efficient antimicrobial coatings on biomedical devices or implants.
The thesis has been divided into five chapters based on the individual works. In Chapter 1, a brief review on the history of LbL self-assembly, mechanism of self-assembly along with factors affecting the process have been discussed. Followed by a brief discussion about the fabrication of multilayered hollow capsules (core-shell structure), their applications in drug delivery and fabrication of multifunctional multilayered capsules through core and shell have been discussed. Finally, recent developments in LbL self-assembly and multilayered hollow capsules using carbon based materials (fullerenes, carbon nanotubes and graphene oxide) and their biomedical applications have been presented.
Chapter 2 deals with the study on fabricating multifunctional multilayered capsules for facile encapsulation of multiple drugs into the capsules, which is achieved by functionalizing the capsules with graphene oxide (GO) as one of the layer materials. The GO composite capsules exhibited unique permeability properties compared to traditional multilayered capsules made of two polyelectrolytes. Multiple drugs could be simultaneously encapsulated in the capsules in a simple and effective manner. These capsules were found to exhibit a “core-shell” loading property for encapsulation of dual drugs into the core and shell of the capsules respectively. In addition, the graphene oxide composite capsules showed excellent biocompatibility towards MCF-7 cells. This study is the first one that demonstrates the potential of hybrid polyelectrolyte capsules without the use of micelles or polymer-drug conjugates for multi-drug encapsulation.
Chapter 3 deals with the development of a facile route for near-infrared (NIR)-light triggered release of encapsulated drugs from the multilayered capsules via incorporation of graphene oxide (GO) into layer-by-layer (LbL) assembled capsules without addition of any external additives such as metal nanoparticles (NPs) or carbon nanotubes (CNTs) into the shells of the capsules. Till now, there is no report on light-responsive drug delivery system by utilizing the NIR-optical absorption properties of GO. Here, graphene oxide (GO) plays a dual role, serving as a structural component of LbL capsules as well as strong NIR-light absorbing agent, which efficiently converts absorbed light into heat. Upon NIR-laser irradiation, the microcapsules were opened in “point-wise fashion” due to local heating caused by laser irradiation. The rupturing mechanism of the capsules has been clearly demonstrated using confocal fluorescence microscopy and high resolution transmission electron microscopy. The light-triggering ability of these capsules has been applied successfully to release the encapsulated anticancer drug, doxorubicin.
Chapter 4 deals with simple and versatile simple routes for encapsulation of model hydrophobic drug. Encapsulation of hydrophobic drugs in pharmaceutical industries is always a big challenge due to limited number of available drug carrier systems and poor aqueous solubility of hydrophobic drugs. Here, by combining the special properties of cyclodextrins (CDs) with biodegradable inorganic calcium carbonate microparticles, the hybrid CD-CaCO3 mesoporous microparticles have been prepared for the first time. These CD-CaCO3 microparticles were utilized as sacrificial templates to prepare CDs-modified LbL capsules. We have demonstrated that both the hybrid CD-CaCO3 microparticles and CDs-modified capsules are potential carriers for encapsulation of model hydrophobic drugs (self-fluorescent coumarine and nile red dyes) with high loading efficiency using supramolecular host-guest interaction between entrapped CDs and hydrophobic dye molecules. Compared with other inorganic drug carrier systems (mesoporous silica), CaCO3 porous particles have better biocompatibility, biodegradability and cost-effective and without use of any organic solvents. Both these hybrid CD-CaCO3 microparticles and CDs-modified capsules can be good candidates for encapsulation of hydrophobic drugs without involving extreme chemical conditions for fabrication.
Chapter 5 deals with development of facile synergistic method for killing pathogenic bacteria by combining the intrinsic antimicrobial activity of graphene oxide (GO) and unique photothermal conversion property of GO into a single material. We fabricated composite LbL films of graphene oxide (GO) and poly(allylamine hydrochloride) (PAH) films. Antimicrobial activity of these GO composite films has been studied using Escherichia coli (E. coli) cells by varying number of deposited layers on glass slides (20 to 80 layers) and results suggest that by increasing the number of deposited layers, antimicrobial activity is also increased gradually. Based on the unique optical properties of GO, photothermal therapy have been carried out for killing of E. coli using GO composite films by varying number of deposited layers (20 to 80 layers) by irradiation of NIR-pulse laser at 1064 nm wavelength (Nd:YAG, 10 ns pulse, 10 Hz). The photothermal results revealed the enhanced antimicrobial activity compared to GO composite films alone without NIR-laser irradiation. The synergistic photothermal killing ability along with intrinsic antimicrobial activity of GO films results in much faster killing compared to films alone.
|
94 |
Design & Fabrication of Bio-responsive Drug Carriers Based on Protamine & Chondroitin Sulphate BiopolymersRadhakrishnan, Krishna January 2014 (has links) (PDF)
The present thesis focuses on the fabrication of bio-stimuli responsive micro- and nano-carriers for drug delivery applications. In particular, the objective of this work is to investigate the possibility of using polypeptide drug protamine and glycosaminoglycan drug, chondroitin sulphate as stimuli responsive components in the design of bioresponsive carriers. These biopolymers are biocompatible, biodegradable and clinically used for various applications.
Two designs that incorporate these stimuli responsive components have been studied in this thesis. The first design involves hollow micro and nanocapsules that have been fabricated by incorporating the stimuli responsive biopolymers as wall components. Upon exposure to biological triggers, these hollow capsules disintegrate releasing the encapsulated drug. The second design consists of mesoporous silica nanoparticles-biopolymer hybrids. The mesoporous silica nanoparticles act as a gated scaffold that carries the drug molecules. The mesopores of these drug loaded nanoparticles are then blocked with the bioresponsive polymers. Upon exposure to the bio-triggers which consist of enzymes over-expressed in conditions such as cancer and inflammation, these “molecular gates” disintegrate allowing the drug trapped in the mesoporous silica nanoparticles to escape into the surroundings.
The thesis has been divided into five chapters:
Chapter 1 is an introduction to bio-responsive drug delivery. The broad
classification of stimuli used in responsive drug delivery systems are visited. A brief discussion on the various types of bio-stimuli that can be utilized in designing bio-responsive systems is also included in this chapter.
Chapter 2 defines the aims and scope of the thesis which is followed by an overview of the various design parameters involved in the fabrication of systems presented in this work. The major stimuli responsive components and the architectures incorporating these elements are discussed in detail here. A literature review of the various carrier designs involved in the study is provided , with special emphasis on stimuli responsive drug delivery.
Chapter 3 gives an overview of the various materials and methods involved in this work. A summary of the various characterisation techniques used in the thesis is also included along with the details of the experiments that has been carried out.
Chapter 4 provides an overview of the results and discussions of the thesis. The chapter has been divided into six sections:
Chapter 4.1 deals with the fabrication of a hollow microcapsule system incorporated with protamine as the stimuli responsive element for bio-responsive drug delivery. The hollow microcapsules that were fabricated by Layer by Layer assembly of protamine and heparin display pH responsive variations in permeability and disintegrate in the presence of the enzyme trypsin that degrades protamine. The biologically triggered enzyme responsive drug release from these microcapsules is also demonstrated using enzymes secreted by colorectal cancer cells.
Chapter 4.2 presents nanocapsules fabricated from protamine and heparin. The pH and enzyme responsive drug release of this systems is evaluated in vitro. A wall crosslinking strategy has been tested to control the rate of drug release under physiological pH conditions in the absence of the trigger. The cellular interactions of these nanocapsules loaded with an anticancer drug, doxorubicin was studied using cancer cell lines. Bioavailability studies of doxorubicin encapsulated in these nanocapsules were performed using a BALB/c mice model.
Chapter 4.3 discusses the fabrication of a hollow microcapsule system that can disintegrate in response to dual biological stimuli. These carriers have been fabricated by incorporating protamine and chondroitin sulphate as the wall components. Due to the incorporation of two separate stimuli responsive components in the walls, these capsules are expected to be sensitive to the enzymes trypsin or hyaluronidase I.
Chapter 4.4 deals with the fabrication of dual enzyme responsive hollow nanocapsule which can be targeted to deliver anticancer agents specifically inside cancer cells. The enzyme responsive elements integrated in the hollow nanocapsule walls can undergo degradation in presence of either of the enzymes trypsin or hyaluronidase I leading to the release of encapsulated drug molecules. The drug release from these nanocapsules which were crosslinked and functionalised with folic acid, is evaluated under varying conditions. The cellular uptake and intracellular drug delivery by these nanocapsules were evaluated in cervical cancer cell lines.
Chapter 4.5 introduces a mesoporous silica nanoparticle − protamine hybrid system. The system consists of a mesoporous silica nanoparticle support whose mesopores are capped with protamine which effectively blocks the outward diffusion of the drug molecules from the mesopores of the mesoporous silica nanoparticles. Upon exposure to the enzyme trigger, the protamine cap disintegrates opening up the molecular gates and releasing the entrapped drug molecules. The drug release from this system is evaluated in different release conditions in the presence and absence of the enzyme trigger. The ability of these particles to deliver hydrophobic anticancer drugs and induce cell death in colorectal cancer cells has also been demonstrated.
Chapter 4.6 discusses the fabrication of another mesoporous silica nanoparticles based bio-responsive drug delivery system consisting of mesoporous silica and chondroitin sulphate hybrid nanoparticles. The ability of the system to modulate drug release in response to hyaluronidase I is demonstrated. By utilizing a cervical cancer cell line, we have demonstrated the cellular uptake and intracellular delivery of hydrophobic drugs encapsulated in these particles. Interestingly, the system showed ability to enhance the anticancer activity of hydrophobic drug curcumin in these cancer cells.
Chapter 5 gives a summary of the general conclusions drawn from the thesis work.
|
95 |
Síntesis, caracterización y aplicaciones de microcápsulas de aceite esencial de naranja (Citrus sinensis) en tejidos 100 % algodón / Síntese, caracterização e aplicações de microcápsulas de óleo essencial de laranja (Citrus sinensis) em tecidos 100 % algodãoSoares Rossi, Wagner 11 April 2022 (has links)
[ES] La tecnología de microencapsulación se ha utilizado en áreas como farmacología, medicina, ingeniería y diseño. Centrado en el área de la ingeniería, más específicamente, la selección de materiales y el desarrollo de productos, el carácter simbólico, perceptivo y funcional se puede combinar para el diseño de productos innovadores. Mediante la tecnología de microencapsulación se combinan una amplia gama de materiales de núcleo y membrana, más específicamente en la área textil, la aplicación de microcápsulas puede proporcionar el desarrollo de tejidos y materiales funcionales con propiedades específicas. En este contexto, este trabajo se propone verificar las condiciones y analizar la síntesis de microcápsulas de aceite esencial de naranja (Citrus sinensis) y estudiar su comportamiento cuando se aplica a tejidos de algodón. Para la síntesis de microcápsulas de membrana polimérica de melamina-formaldehído con núcleo de aceite esencial de naranja (Citrus sinensis) se utilizó el método de polimerización in situ. El aceite esencial de naranja se caracterizó por cromatografía de gases, espectroscopia infrarroja por transformada de Fourier, termogravimetría, las microcápsulas sintetizadas se caracterizaron por espectroscopia infrarroja por transformada de Fourier, termogravimetría, microscopía electrónica de barrido y haz de iones enfocado. Las microcápsulas poliméricas con núcleo de aceite esencial de naranja sintetizadas se aplicaron al tejido algodón mediante tres métodos diferentes (impregnación, pulverización y estampación). Después de la aplicación sobre el tejido de algodón, se realizón prueba de frote, pruebas de lavado y prueba de actividad antibacteriana en laboratorio para estudiar el comportamiento de las microcápsulas sobre el sustrato. La caracterización de las muestras de tejido con las microcápsulas aplicadas, antes y después de las pruebas de durabilidad, se realizó mediante microscopía electrónica de barrido y espectroscopía infrarroja por transformada de Fourier. Al finalizar se sistematizaron los procedimientos, condiciones y parámetros para la polimerización in situ así como la aplicación de microcápsulas poliméricas con núcleo de aceite esencial de naranja (Citrus sinensis) en tejido 100 % algodón, avanzando en el estudio de la selección de materiales para aplicación en textiles que se puede utilizar para el desarrollo de productos innovadores. Los resultados mostraron que se produjo la microencapsulación del aceite esencial de naranja volátil y que las microcápsulas aplicadas al tejido de algodón presentan actividad antibacteriana y resistien quince ciclos de lavado utilizando la norma ISO 105 C06: 2010. / [CA] La tecnologia de la microencaspulació s'utilitza en àrees com farmacologia, medicina, enginyeria i disseny. Centrat en l'àrea de l'enginyeria específicament, la selecció dels materials i el desenvolupament de productes de caràcter simbólic, perceptiu i funcional es pot combinar per al disseny de productes innovadors. Mitjançant la tecnologia de la microencapsulació es combinen una àmplia gamma de materials de nucli i membrana, més específicament en l'àrea tèxtil, l'aplicació de microcàpsules pot proporcionar el desenvolupament de teixits i materials funcionals amb propietats específiques. En aquest context, aquest treball es proposa verificar les condicions i analitzar la síntesi de microcàpsules d'oli essencial de taronja (Citrus sinensis) i estudiar el seu comportament quan s'aplica als teixits de cotó. Per a la síntesi de microcápsules de membrana polimèrica de melanina-formalheid amb nucli d'oli essencial de taronja (Citrus sinensis) s'ha utilitzat el mètode de polimeritzacio in situ. L'oli essencial de taronja es va caracteritzar per cromatografia de gasos, espectroscòpia infraroja per transformada de Fourier, termogravimetria, les microcàpsules sintetitzades es caracteritzaven per espectroscopia infraroja per transformada de Fourier, termogravimetria, microscòpia electrònica d'escombrat i feix d'ions enfocat. Les microcàpsules polimèriques amb nucli d'oli essencial de taronja sintetitzades s'han aplicat al teixit de cotó mitjançant tres mètodes diferents (impregnació, pulverització i estampat). Després de l'aplicació sobre el teixit de cotó, s'ha realitzat prova de trot, prova de llavat i prova de activitat antibacteriana en laboratori per a estudiar el comportament de les microcàpsules sobre el sustrat. La caracterització de les mostres de teixit amb microcàpsules aplicades, abans i després de les proves de durabilitat, s'ha realitzat mitjançat microscòpia electrònica d'escombrat i espectroescòpia infraroja per transformada de Fourier. Al finalitzar la sistematització dels procediments, condicions i paràmetres per a la polimerització in situ així com l'aplicació de microcàpsules polimèriques amb nucli d'oli essencial de taronja (Citrus Sinensis) en teixit de cotó 100%, avançat en l'estudi de la selecció de materials per a l'aplicació en tèxtil que es puga utilitzar en el desenvolupament de productes innovadors. Els resultats han demostrat que s'ha produït la microencapsulació del oli essencial de taronja volàtil i que les microcàpsules aplicades al teixit de cotó presenten activitat antibacteriana han resistit quinze cicles de llavat utilitzant la normativa ISO 105 C06:2010. / [EN] Microencapsulation technology has been used in areas such as pharmacology, medicine, engineering and design. Focused on the engineering area, more specifically, material selection and product development, the symbolic, perceptive and functional character can be combined for the design of innovative products. Through microencapsulation technology, a wide range of core and membrane materials are combined, more specifically in the textile area, the application of microcapsules can provide the development of fabrics and functional materials with specific properties. In this context, this work proposes to verify the conditions and analyze the synthesis of microcapsules of orange essential oil (Citrus sinensis) and study their behavior when applied to cotton fabric. For the microcapsules synthesis of melamine-formaldehyde polymeric membrane with orange essential oil core (Citrus sinensis), the in situ polymerization method was used. The orange essential oil was characterized by gas chromatography, Fourier transform infrared spectroscopy, thermogravimetric, the synthesized microcapsules were characterized by Fourier transform infrared spectroscopy, thermogravimetric, scanning electron microscopy and focused ion beam. The polymeric microcapsules with an orange essential oil core synthesized were applied to cotton fabric by three different methods (impregnation, spraying and screen printing). After application on the cotton fabric, friction tests, washing tests and antibacterial activity tests were performed in the laboratory to study the behavior of microcapsules on the substrate. The characterization of fabric samples with the applied microcapsules, before and after the durability tests, was performed by scanning electron microscopy and infrared spectroscopy by Fourier transform. At the end, the procedures, conditions and parameters for in situ polymerization as well as the application of polymeric microcapsules with an orange essential oil core (Citrus sinensis) in 100 % cotton fabric were systematized, advancing the study of the selection of materials for application in textiles that can be used for the development of innovative products. The results showed that microencapsulation of the volatile orange essential oil occurred and that the microcapsules applied to the cotton fabric showed antibacterial activity and resisted fifteen washing cycles using the ISO 105 C06: 2010. / Soares Rossi, W. (2022). Síntesis, caracterización y aplicaciones de microcápsulas de aceite esencial de naranja (Citrus sinensis) en tejidos 100 % algodón [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182096
|
Page generated in 0.0617 seconds