• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 39
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 122
  • 55
  • 36
  • 35
  • 28
  • 28
  • 26
  • 21
  • 19
  • 19
  • 17
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Physical and Biological Constraints on the Abundance of Cyanobacteria in the James River Estuary

Trache, Brendan C 01 January 2015 (has links)
The tidal-fresh James River experiences recurring blooms of toxin-producing cyanobacteria, including Microcystis aeruginosa. However, cyanobacteria cell densities in the James are relatively low. Our purpose was to identify key factors suppressing cyanobacteria growth in the face of eutrophication. A mesocosm experiment was designed to test the effects of light, mixing and grazing on cyanobacteria abundance, with nutrients held constant. We predicted that toxic cyanobacteria would be most abundant under stagnant conditions, with enhanced light, with no bivalve grazers present. Abundances of indicator gene copies and phytoplankton counts supported this hypothesis. However, chlorophyll-a, phycocyanin, and the toxin microcystin were all found to be most abundant under mixed conditions with ambient light. Statistically, light and mixing were important in controlling toxic cyanobacteria abundance, with little to no effect observed for bivalve grazers. Our findings suggest that toxin production may be regulated by factors independent from those driving algal growth and cyanobacteria abundance.
12

Molekulare Funktionsanalyse von Microcystin in Microcystis aeruginosa PCC 7806

Zilliges, Yvonne 18 June 2008 (has links)
Microcystine sind die wohl bekanntesten cyanobakteriellen Toxine. Sie werden im Wesentlichen durch die im Süßwasser weltweit verbreitete, koloniebildende Gattung Microcystis synthetisiert. Die biologische Funktion dieser Peptide ist jedoch ungeklärt. In dieser Studie wurde die Fragestellung erstmals über einen globalen Ansatz auf molekularer Ebene analysiert. Die proteomischen Analysen zwischen M. aeruginosa PCC 7806/ Wildtyp und einigen Microcystin-freien Mutanten deuten auf eine physiologische Rolle der Microcystine. Microcystine beeinflussen die Abundanz zahlreicher Proteine. Prominentester Vertreter ist RubisCO – Schlüsselenzym des Calvin Zyklus. RubisCO und andere im 2D selektierte Proteine konnten außerdem als mögliche zelluläre Bindepartner des Microcystins identifiziert werden. Möglicherweise bindet MC an bestimmte Cysteinreste dieser Proteine. Mit dem Knockout der mcy-Gene geht außerdem eine Überexpression eines Morphotyp-spezifischen Proteins einher, das MrpC genannt wurde. Dieses Protein vermittelt möglicherweise Zell-Zell-Interaktionen in Microcystis. / Microcystins are the most common cyanobacterial toxins found in freshwater lakes and reservoirs throughout the world. They are frequently produced by the unicellular, colonial cyanobacterium Microcystis; however, the role of the peptide for the producing organismen is poorly understood. In this study we describe the first global approach to investigate this topic on a molecular level. Proteomic studies with M. aeruginosa PCC 7806 wild-type and several microcystin-deficient mutants indicated a physiological function for microcystin. Microcystin was shown to influence the abundance of several proteins which have an intra- or extracellular function. A prominent candidate is RubisCO, the key enzyme of the calvin cycle. RubisCO and other proteins, initially selected by 2D analysis, are putative cellular binding partners of microcystin. A potentially interaction mechanismen is the kovalent binding of microcystin to cysteine residues of the protein. Moreover, several knockouts of microcystin biosynthesis genes result in an overexpression of a putative morpho-type specific factor, named MrpC. This protein possibly mediates cell-cell interactions in Microcystis.
13

Sublethal Toxicity of Microcystis and Microcystin-LR in Fish

Rogers, Emily Dawn 01 December 2010 (has links)
The occurrence of blooms of toxic cyanobacteria in freshwater environments is a global ecological and public health concern. Species of Microcystis are of particular importance because blooms occur in many freshwater environments throughout the world and microcystin toxin concentrations can exceed World Health Organization advisory levels. While microcystin has been associated with fish kills, sublethal effects of chronic exposure at environmentally relevant concentrations are relatively unknown. The objective of this research was to evaluate toxicity of microcystin and Microcystis in fish during all life history stages. We evaluated global gene expression response in larval zebrafish (Danio rerio), and a sub-set of biomarker genes indicative of microcystin exposure were identified. In addition, vitellogenin genes were highly up-regulated in zebrafish exposed to Microcystis but not the microcystin toxin, indicating potential endocrine disrupting effects of Microcystis blooms. Effects on reproduction were evaluated in adult zebrafish exposed to Microcystis. There was a significant decrease in the percentage of adults that spawned, however fecundity and larval survival were not affected. Laboratory mesocosm experiments with channel catfish (Ictalurus punctatus) were also conducted to determine the importance of dietary and aqueous exposure in microcystin bioaccumulation and assess histopathological lesions. Tissue toxin concentrations and histopathological lesions were also evaluated in channel catfish collected from Lake Erie and Waterville Reservoir, North Carolina to monitor fish living in environments affected by Microcystis blooms and relate responses to those observed in laboratory exposures.
14

The preparation of an immunosensor for the detection of microcystins and nodularins by immobilisation of a labelled antibody onto a polymer modified electrode

Siebritz, Robert Matthew January 2011 (has links)
Masters of Science / South African dams and reservoirs are increasingly showing the propensity to support sustained populations of Cyanobacteria (blue green algae). These photosynthetic bacteria occur throughout the world and can rapidly form blooms in eutrophic water systems. The occurrence of these photosynthetic bacteria, in our dwindling drinking water source dams, poses a serious, economic, as well as a health, threat to and arid country like South Africa due to is potential to produce of toxic metabolites like Microcystins and Nodularins (MCN). MCN's are cyclic peptides toxins, harmful to humans and animals, and its toxicological mechanism is based on a strong inhibition of protein phosphatises in the liver. This may lead to severe liver damage and increased tumour development. Rural communities consuming untreated water in South Africa are most at risk due the high toxicity of MCN’s at low doses.We endeavour to develop an immunosensor for the detection of Microcystins and nodularins using anti-sheep IgG antibody labelled with horseradish peroxidase (HRP) immobilised on a modified glassy-carbon polymer surface. The immunosensor will be applied to water samples for MCN’s as a group of compounds recognised by the ADDA moiety common to all MCN congeners. The immunosensor will provide immediate confirmation and quantification of MCN’s in situ. A competitive Enzyme Linked Immuno-Sorbant Assay (ELISA) and High Performance liquid Chromatography (HPLC) will be used to validate results of our immunosensor. Elisa's are widely used as a screening test method for MCN's. The antibody-antigen specificity forms the bases for the recognition of target compound (MCN's) by antibodies which bind to a compound which is labelled with a colour indicator, and quantified by spectrophotometry.
15

Metabolic Variation in the Toxigenic Cyanobacterium Microcystis Aeruginosa

Racine, Marianne 17 May 2018 (has links)
Cyanobacteria are notorious for their potential to produce toxins with human health effects, particularly the hepatotoxic microcystins (MCs), but cyanobacteria also produce other bioactive compounds. A wide variety of oligopeptides including aeruginosins, cyanopeptolins and cyanobactins may be as toxic as MCs. To investigate the production of these compounds, an UPLC QTOF-MS/MS method was developed to compare the metabolomic profiles of various strains of a common bloom-forming and toxigenic species, Microcystis aeruginosa, as well as those obtained from lakes with mixed cyanobacterial assemblages. Although many compounds could not be confirmed, MCs were rarely the dominant secondary metabolite in any sample. Since the biological role of MCs remains unknown, I tested the hypothesis that MCs provide protection against oxidative stress as induced through exposure to the herbicide atrazine and UV radiation in pure cultures of toxic vs non-toxic strains. Results were inconclusive and varied between strains suggesting other mechanisms exist to counter oxidative stress.
16

A novel method for antisense oligonucleotide gene expression manipulation in toxigenic cyanobacterial species, Microcystis aeruginosa

Velkme, Erik 01 December 2020 (has links)
Algal blooms caused by toxigenic cyanobacterial species are an increasing economic burden globally, as high anthropogenic inputs of nitrogen and phosphorous, coupled with rising levels of atmospheric CO2, promote eutrophication and enhance bloom proliferation. Of the freshwater bloom forming species, Microcystis aeruginosa has garnered the most attention due to the production of toxic secondary metabolites known as microcystins. These cyclic peptides are potent eukaryotic protein phosphatase 1 and 2A inhibitors, and can induce hepatic damage if concentration levels reach above the World Health Organization level of 1 µg/L. Current mitigation strategies of water column disruption or by use of broad acting chemicals, are limited in their range and may cause unwanted off target effects to the surrounding biota. Antisense oligonucleotides are short single-stranded DNA polymers that hybridize with transcribed mRNA, and suppress translation of protein products through steric hindrance of ribosomes, or by RNAse H degradation of the DNA/RNA bound complex. While antisense oligonucleotide applications have proven successful in the pharmaceutical industry, their potential remains largely unexplored in environmental contexts. For this reason, we investigated the knockdown of microcystin synthetase gene cluster mcyE in M. aeruginosa. We found that ionic charge neutralization coupled with heat shock were effective chemical competence based methods for delivery, mcyE transcript abundance in cells treated with phosphodiester linked antisense oligonucleotides significantly decreased in RT-qPCR analysis, and production of intracellular microcystin significantly decreased over a 24 hour period (-1.9 fg/cell). This work demonstrates a novel proof of concept for the potential use of exogenous antisense oligonucleotides to target M. aeruginosa in harmful algal bloom occurrences.
17

ASSESSMENT OF BIODEGRADATION AND TOXICOLOGICAL EFFECTS OF MICROCYSTINS

Krishnan, Anjali 27 June 2019 (has links)
No description available.
18

Developing Electrochemical Aptamer-based Biosensors for Quantitative Determination of Cyanotoxins in Water

Vogiazi, Vasileia January 2020 (has links)
No description available.
19

Zebra Mussel (Dreissena Polymorpha) Promotion of Cyanobacteria in Low-Nutrient Lakes and the Subsequent Production and Fate of Microcystin

Woller-Skar, M. Megan 01 December 2009 (has links)
No description available.
20

Cyanobacterial blooms: causes, innovative monitoring and human health impact

Zhang, Feng 15 October 2014 (has links)
No description available.

Page generated in 0.0435 seconds