• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes socio-statistiques pour l’aide à la décision en milieu industriel : Application à la gestion des capacités d’un système d’information en industrie micro-électronique / Industrial decision-aid socio-statistical methods : Applied to the capacity management of an IS in the microelectronics industry

Lutz, Michel 14 May 2013 (has links)
Les données industrielles offrent un matériau pour la prise de décision. Les travaux présentés concernent la transformation de données brutes en connaissances, pour contribuer au système de connaissances d’une organisation et améliorer son système décisionnel. Un processus d’aide à la décision est proposé. Il implique les acteurs de l’organisation et l’emploi de méthodes formelles. D’abord, il analyse et formalise les problématiques décisionnelles. Ensuite, il construit une aide la décision quantitative. Cette méthodologie est appliquée à un problème particulier : la gestion des capacités des TI d’une usine de STMicroelectronics. En effet, les managers doivent assurer un équilibre entre le coût de l’infrastructure TI et le niveau de service offert. Notre processus offre une aide pertinente. Il permet de surmonter deux enjeux, fréquents lors de la gestion des capacités : la complexité des systèmes IT et la prise en compte de l’activité métier. Situant ces travaux dans le cadre du référentiel ITIL, l’application du processus permet de constituer des modèles prédictifs, mettant en relation l’activité des serveurs informatiques et l’activité industrielle. Cette application permet aussi de contrôler dynamiquement la validité des modèles, ainsi que l’activité quotidienne du SI. Nos travaux formalisent quantitativement des connaissances, en favorisent l’utilisation dans les processus décisionnels, et en assurent l’évolution dans le temps. Nos recherches posent des fondations pour un plus large recours plus à l’exploitation des données issues des systèmes de production, dans le cadre du développement de systèmes de support à la décision et de perspectives Big Data. / A proper analysis of industrial data can provide material for decision making. The research work presented deals with the question: how can one convert raw data into useable information, to contribute to the knowledge management of an organization and improve its dynamic decision making? A decision-aid process is proposed. It implies actors of the organization and use of formal methods. Firstly, it analyses and formalizes decisional problems. Then, it develops an appropriate decision-aid on the basis of statistics. Our methodology is applied to a specific issue: capacity management of IT of a STMicroelectronics plant. This application raises a decision issue: managers have to ensure the right balance between infrastructure cost and service level offered. We demonstrate that the process may provide relevant support. This negates two managerial dilemmas, usually encountered when managing capacity: complexity of IT systems and incorporation of the business activity. Our application has been developed in the scope of the ITIL framework. It will be shown how the process builds predictive models, which link the activity of hardware servers to the industrial activity. Methods are also proposed, to monitor daily the quality of these models, as well as the overall activity of the IS. This work helps at formalizing quantitatively organizational knowledge, facilitating its use in decisional processes, but also ensuring its positive change over time. We hope this research is laying some foundations for a broader exploitation of the data stored in modern manufacturing systems, through future development of decision-support systems and Big Data initiatives.
2

Développement des méthodes génériques d'analyses multi-variées pour la surveillance de la qualité du produit / Development of multivariate analysis methods for the product quality prediction

Melhem, Mariam 20 November 2017 (has links)
L’industrie microélectronique est un domaine compétitif, confronté de manière permanente à plusieurs défis. Pour évaluer les étapes de fabrication, des tests de qualité sont appliqués. Ces tests étant discontinus, une défaillance des équipements peut causer une dégradation de la qualité du produit. Des alarmes peuvent être déclenchées pour indiquer des problèmes. D’autre part, on dispose d’une grande quantité de données des équipements obtenues à partir de capteurs. Une gestion des alarmes, une interpolation de mesures de qualité et une réduction de données équipements sont nécessaires. Il s’agit dans notre travail à développer des méthodes génériques d’analyse multi-variée permettant d’agréger toutes les informations disponibles sur les équipements pour prédire la qualité de produit en prenant en compte la qualité des différentes étapes de fabrication. En se basant sur le principe de reconnaissance de formes, nous avons proposé une approche pour prédire le nombre de produits restant à produire avant les pertes de performance liée aux spécifications clients en fonction des indices de santé des équipement. Notre approche permet aussi d'isoler les équipements responsables de dégradation. En plus, une méthodologie à base de régression régularisée est développée pour prédire la qualité du produit tout en prenant en compte les relations de corrélations et de dépendance existantes dans le processus. Un modèle pour la gestion des alarmes est construit où des indices de criticité et de similarité sont proposés. Les données alarmes sont ensuite utilisées pour prédire le rejet de produits. Une application sur des données industrielles provenant de STMicroelectronics est fournie. / The microelectronics industry is a highly competitive field, constantly confronted with several challenges. To evaluate the manufacturing steps, quality tests are applied during and at the end of production. As these tests are discontinuous, a defect or failure of the equipment can cause a deterioration in the product quality and a loss in the manufacturing Yield. Alarms are setting off to indicate problems, but periodic alarms can be triggered resulting in alarm flows. On the other hand, a large quantity of data of the equipment obtained from sensors is available. Alarm management, interpolation of quality measurements and reduction of correlated equipment data are required. We aim in our work to develop generic methods of multi-variate analysis allowing to aggregate all the available information (equipment health indicators, alarms) to predict the product quality taking into account the quality of the various manufacturing steps. Based on the pattern recognition principle, data of the degradation trajectory are compared with health indices for failing equipment. The objective is to predict the remaining number of products before loss of the performance related to customer specifications, and the isolation of equipment responsible for degradation. In addition, regression- ased methods are used to predict the product quality while taking into account the existing correlation and the dependency relationships in the process. A model for the alarm management is constructed where criticality and similarity indices are proposed. Then, alarm data are used to predict the product scrap. An application to industrial data from STMicroelectronics is provided.

Page generated in 0.0693 seconds