41 |
Micro/Nanomanipulation basée sur un Microscope à Force AtomiqueAcosta Mejía, Juan Camilo 16 December 2011 (has links) (PDF)
A l'échelle nanoscopique, un problème scientifique fondamental réside dans la difficulté de manipuler de façon interactive et répétable un nano-objet. Cette difficulté est un frein majeur pour des applications comme les nanotransistors, les nanosystèmes ou les futurs NEMS (Nano Electro Mechanical System). Ces dispositifs émergents sont ainsi ralentis dans leur cadre expérimental. Cette thèse s'inscrit dans la continuité des recherches développées au sein de l'équipe de microrobotique de l'ISIR. Elle se focalise sur l'exploitation de capteurs d'effort pour la manipulation contrôlée à plusieurs doigts actifs. Le microscope à force atomique est utilisé pour ses propriétés de capteur d'effort. Dans un premier temps, un préhenseur composé de deux doigts indépendants avec mesures des forces d'intercation a été conçue. Avec ce système original, des micromanipulations en trois dimensions de microsphères ont été réalisée avec succès dans l'air, en mesurant de façon continue les efforts d'interaction. Ce système a aussi été utilisé pour saisir et déposer des nanofils afin de former des nanocroix, ces dernières étant des nanostructures émergentes pour la fabrication, par jonctions, de nanotransistors. Par la suite, des oscillateurs en quartz ont été utilisés pour la caractérisation de nanostructures, avec retour d'effort dy- namique. Le comportement non-linéaire en raideur de nanohélices lors de l'élongation a été caractérisé pour la première fois sur la totalité de la plage. Enfin, des sondes en quartz de haute fréquence ont été exploitées pour augmenter la vitesse d'acquisition d'images de l'AFM. De cette manière, la tâche de manipulation et d'imagerie en parallèle sous AFM a été optimisée et de nombreuses applications sont maintenant envisagées.
|
42 |
Magnetic Levitation of Polymeric Photo-thermal MicrogrippersElbuken, Caglar January 2008 (has links)
Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of
magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation.
In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated
with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by
reducing the positioning error to 20.3 µm.
For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively
characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties.
It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited
magnetic samples shows a great promise toward the fabrication of levitating MEMS devices.
The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The
microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact
actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized
experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot.
The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when
electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated
on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire,
125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed
chamber without sacrificing the positioning accuracy.
|
43 |
Magnetic Levitation of Polymeric Photo-thermal MicrogrippersElbuken, Caglar January 2008 (has links)
Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of
magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation.
In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated
with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by
reducing the positioning error to 20.3 µm.
For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively
characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties.
It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited
magnetic samples shows a great promise toward the fabrication of levitating MEMS devices.
The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The
microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact
actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized
experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot.
The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when
electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated
on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire,
125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed
chamber without sacrificing the positioning accuracy.
|
44 |
Du modèle à la réalité :<br />liaison individuelle et adhésion biologiquePincet, Frédéric 12 April 2005 (has links) (PDF)
.
|
45 |
Robotic Single Cell Manipulation for Biological and Clinical ApplicationsLeung, Clement 14 December 2011 (has links)
Single cell manipulation techniques have important applications in laboratory and clinical procedures such as intracytoplasmic sperm injection (ICSI) and polar body biopsy
for preimplantation genetic diagnosis (PGD). Conventionally, manipulation of cells conducted in these procedures have been performed manually, which entails long training hours and stringent skills. Conventional single cell manipulation also has the limitation of low success rates and poor reproducibility due to human fatigue and skill variations across operators. This research focuses on the integration of computer vision microscopy and control algorithms into a system for the automation of the following single cell manipulation
techniques: (1) sperm immobilization, (2) cell aspiration into a micropipette, and cell positioning inside a micropipette, and (3) rotational control of cells in three dimensions. These automated techniques eliminate the need for significant human involvement and long training. Through experimental trials on live cells, the automated techniques demonstrated high success rates.
|
46 |
Des pinces optiques pour un ressenti tactile de la micromanipulationPacoret, Cecile 07 July 2011 (has links) (PDF)
Les microtechnologies sont de plus en plus présentes dans notre quotidien. Leur production est aujourd'hui restreinte à des procédés de masse par photolithographie. Leur fabrication est mal contrôlée et les défauts sont fréquents. Or l'étude individuelle de chaque microcomposant est particulièrement difficile et coûteuse. La microrobotique propose des solutions automatiques ou téléopérées afin de résoudre ce type de verrous technologiques. Pour des raisons économiques et de flexibilité, de nombreux utilisateurs se tournent vers un contrôle impliquant un opérateur. Plusieurs travaux ont proposé un retour des interactions lors de la tâche au moyen d'une interface utilisateur évoluée, dite haptique, afin d'augmenter l'immersion dans le micromonde et donc la dextérité de l'opérateur. Dans le cas de la micromanipulation, les facteurs d'échelle et les fortes dynamiques provoquent de nombreuses instabilités dans le couplage bilatéral recherché. Il a donc été nécessaire d'utiliser des contrôleurs évolués au détriment des sensations. Pour obtenir des sensations réelles et utiles, nous proposons de revisiter la problématique sous un autre angle. Plutôt que d'utiliser un micromanipulateur existant, nous avons conçu un système dédié au retour d'effort. Nous posons les prémices d'un nouveau concept de micromanipulation haptique flexible, fiable et utile grâce à des choix et des optimisations de méthodes et de technologies : une méthode dédiée de préhension sans contact : les pinces optiques, une maximisation de l'espace de travail de ses actionneurs et capteurs, l'amélioration des performances en terme de dynamique et de bande passante, le développement de nouveau capteur de force robuste à l'environnement, basé sur la vision. Ce travail multidisciplinaire s'appuie sur la réalisation de trois installations expérimentales et sur des collaborations entre des équipes de micromanipulation, d'haptique et de vision.
|
47 |
Genotipagem de Giardia duodenalis: detecção de infecções mistas e recombinações gênicas em amostras de origem humana / Genotyping of Giardia duodenalis: detection of mixed infection and genetic recombination in samples of human originJuliana Martins Aguiar 07 July 2015 (has links)
Giardia duodenalis é um protozoário de distribuição mundial responsável por causar infecções entéricas em uma grande variedade de mamíferos, incluindo os humanos. Mesmo apresentando pouca variação em sua morfologia, os isolados podem ser diferenciados, de acordo com análises de proteína e polimorfismo de DNA, em pelo menos oito agrupamentos genéticos distintos, denominados assemblages (A-H). Apenas os assemblages A e B têm sido reportados em humanos e outros mamíferos. Isolados de assemblage A podem, ainda, ser divididos em quatro sub-assemblages (AI, AII, AIII e AIV). Sequencias heterogêneas têm sido frequentemente identificadas em estudos de caracterização molecular envolvendo amostras contendo múltiplos cistos do parasita. Buscando estudar a ocorrência dos eventos de heterozigose de sequencia alélica (ASH) e recombinação gênica, o presente trabalho teve como objetivo isolar cistos de G. duodenalis empregando-se a técnica de micromanipulação e caracterizá-los molecularmente através da análise multilócus envolvendo os genes gdh, tpi, orfC4 e bg. Dez cistos foram individualizados e utilizados na pesquisa. Todos foram igualmente identificados por todos os genes, nove cistos caracterizados como assemblage AII e um cisto caracterizado como assemblage B. Os cromatogramas oriundos do cisto identificado como assemblages B apresentaram diversos sítios heterogêneos nos genes gdh, bg e orfC4, sendo que, nesses dois últimos, observaram-se sobreposições dos alelos AII e B no produto sequenciado (heterozigose inter assemblage). Os produtos de PCR foram clonados e as sequencias obtidas revelaram a ocorrência dos dois alelos neste único cisto. Os sítios polimórficos encontrados nas sequencias do gene gdh indicaram heterozigose intra assemblage B. Embora ASH já tenha sido relatada em cistos individualizados de G. duodenalis, estes são os primeiros resultados indicando a presença dos dois alelos, simultaneamente, em um único indivíduo. Esses resultados demonstram fortes evidências que ocorre troca genética entre indivíduos geneticamente distintos de G. duodenalis / Giardia duodenalis is a worldwide distribution enteric protozoan responsible for causing infections in a wide variety of mammals, including humans. Even showing little change in their morphology, isolates can be distinguished, according to the analysis of proteins and DNA polymorphisms in at least eight distinct genetic groups, known assemblages (A - H). Only assemblages A and B have been reported in humans and other mammals. Isolates of assemblage A also can be divided into four sub-assemblages (AI, AII, AIII and AIV). Heterogeneous sequences have been frequently identified in studies involving molecular characterization of samples containing multiple cysts of the parasite. Seeking to study the occurrence of allelic sequence heterozygosity (ASH) and genetic recombination events, the present study aimed to isolate G. duodenalis cysts employing the micromanipulation technique and characterize them molecularly through multilocus analysis involving gdh, tpi, orfC4 and bg genes. Ten cysts were individualized and used in the research. All cysts were equally identified for all genes; nine cysts were characterized as assemblage AII and one characterized as assemblage B. The chromatograms derived from the cyst identified as assemblage B presented many heterogeneous sites in gdh, bg and orfC4 genes, and in these last two, there were overlaps of alleles AII and B in the sequenced product (heterozygous inter assemblage). PCR products were cloned and the sequences obtained revealed the occurrence of two alleles at this single cyst. The polymorphic sites found in the sequences of the gdh gene indicated intra heterozygosity assemblage B. Although ASH has already been reported in G. duodenalis individualized cysts, these are the first results indicating the presence of two alleles simultaneously in a single individual. These results demonstrate strong evidence that genetic exchange occurs between individuals genetically distinct of G. duodenalis
|
48 |
Estudo eletroquímico de micropartículas individuais e colisões de nanopartículas de magnetita modificadas com azul da Prússia / Electrochemical Study of Individual Microparticles and Collisions of Nanoparticles of Magnetite Modified with Prussian BlueGermano Pereira dos Santos 05 February 2015 (has links)
De acordo com a literatura recente, a eletroquímica de partículas magnéticas e fenômenos de colisões em superfícies eletródicas resultam em curvas voltamétricas e amperométricas com perfis completamente destoados do convencional. Alguns modelos teóricos propõem explicações, no entanto, ainda se observa a necessidade de aquisição de mais dados experimentais. Visando contribuir com esta área, esta Dissertação de Mestrado aborda a manipulação de micropartículas e nanopartículas de magnetita modificadas com azul da Prússia (Fe3O4-PB), bem como o estudo das propriedades eletroquímicas das partículas na presença de um campo magnético externo. Filmes constituídos por micropartículas sobre eletrodos de carbono (grafite) foram obtidos por duas técnicas distintas, drop coating e magneto-deposição. Para ambos os métodos, os filmes apresentaram dois picos nos voltamogramas, um de oxidação (0,12 V) e outro de redução (-0,05 V), que estão associados ao par redox azul da Prússia/branco da Prússia. Para o filme obtido via drop coating, observaram-se correntes de pico mais elevadas. Também, micropartículas de Fe3O4-PB individuais foram isoladas (single particle) com auxílio de um microscópio óptico e analisadas por voltametria, onde se verificou o aparecimento de picos com os mesmos valores de potenciais. Utilizando os dois estados de comutação de campo (0,2 Tesla), ligado e desligado, foi possível controlar a presença e a ausência da partícula no eletrodo. Também, observaram-se diferenças nos valores de densidade de corrente nos cronoamperogramas para cada micropartícula de Fe3O4-PB e que a morfologia da micropartícula interfere significativamente na resposta eletroquímica. Por fim, e agora se tratando da eletroquímica de nanopartículas de Fe3O4-PB sobre um ultramicroeletrodo (UME) de ouro, controlaram-se as colisões das mesmas em diferentes condições experimentais, como na presença e na ausência de um campo magnético externo paralelo a superfície do eletrodo e com intensidades variadas (0,1 e 0,2 Tesla). Na ausência do campo, as nanopartículas que chegaram ao UME colidiram e se acumularam, gerando sinais eletroquímicos do tipo corrente staircase. Na presença de um campo de 0,1 T, observaram-se vários transientes de correntes (spikes) associados às colisões das nanopartículas, eventos esses não observados frequentemente na presença do campo de 0,2 T. Assim, esses resultados abrem a discussão da necessidade de se aperfeiçoarem os modelos que explicam os perfis das curvas voltamétricas e amperométricas para esses sistemas. / According to recent literature, the electrochemistry of magnetic particles and collision phenomena on surfaces result in unconventional voltammetric and amperometric responses. Some theoretical models has been proposed; however, experimental data are required for improve that. In order to contribute to this research area, this Master\'s Dissertation describes the manipulation of microparticles and nanoparticles of magnetite modified with Prussian blue (Fe3O4-PB), as well as the study of electrochemical properties of them in presence of an external magnetic field. Carbon (graphite) electrodes modified with microparticles were obtained by using two different techniques, (i) magneto-deposition and (ii) drop coating. For both, two peaks in the voltammograms were observed, related to oxidation (0.12 V) and reduction (-0.05 V), which are associated with redox couple Prussian blue / Prussian white. Higher peaks currents were observed for the film obtained via drop coating. Also, individual Fe3O4-PB microparticles (single particles) were isolated by using an optical microscope and analyzed by voltammetry, where there was the appearance of peaks with the same potential values. However, using two commutations magnetic states, \"switch on\" and \"switch off\", it was possible to monitor the presence and the absence of the particle on electrode. Also, there were differences in the values of current density in the chronoamperograms for each Fe3O4-PB microparticle, and the morphology of the microparticle significantly interfered in the electrochemical response. Finally, it was performed several electrochemical experiments regarding to collisions of Fe3O4-PB nanoparticles on a gold ultramicroelectrode. Controlled collisions in different experimental conditions were carried out, such as in the presence and absence of an external magnetic field parallel to the surface electrode, and also with intensities fields of 0.1 and 0.2 Tesla. In the absence of the field, the nanoparticles reached the UME and collided, resulting in electrochemical signals of this type staircase, due to accumulation of them. On the other hand, in the presence of a 0.1 T, we observed several transient currents (spikes) associated with the collisions of the nanoparticles. These events were not observed in the presence of the field of 0.2 T. Thus, these findings allow us to the discussion for improvements on the models for these systems, in order to explain the profiles of voltammetric and amperometric responses.
|
49 |
Conception et commande de systèmes microrobotiques magnétiques en milieu ambiant / Conception and control of magnetic microrobotic systems in a dry environmentBouchebout, Soukeyna 03 July 2015 (has links)
Ces dernières années une attention particulière a été portée sur les systèmes autonomes de taille micrométrique. La taille de ces robots, ou particules, rend impossible l’embarquement d’énergie. Des systèmes d’actionnement et de contrôle à distance, notamment par effets magnétiques, ont été proposés. Ils évoluent généralement dans le milieu liquide. Ce milieu est privilégié en raison de la force de trainée qui stabilise les systèmes et simplifie donc leur contrôle. En revanche, ce milieu induit une limitation majeure sur la vitesse de déplacement de ces particules. Pour exploiter pleinement le potentiel d’actionnement rapide lié à la faible inertie de ces particules de petite taille, cette thèse propose la conception et la commande d’un système microrobotique dédié à l’actionnement haute vitesse. Les choix de conception, notamment l’augmentation de la force magnétique, l’utilisation de particules ferromagnétiques et le choix d’un environnement de travail en milieu ambiant permettent d’atteindre de grandes vitesses de déplacements. Cependant, le milieu ambiant pose des problématiques d’adhésion entre la particule et le substrat de travail et d’absence de modèle de connaissance. Des solutions sont proposées pour vaincre ou réduire les forces d’adhésion dans ce milieu, allant de l’actionnement en couple de la particule magnétique à la structuration mécanique du substrat. Une est également implémentée pour augmenter la précision du positionnement et de l’orientation des particules. Une approche permettant de synthétiser et d’implémenter une loi de régulation proportionnelle des deux paramètres de contrôle est proposée. L’approche expérimentale adoptée permet de quantifier les problématiques rencontrées dans le milieu ambiant et de proposer des solutions systématiques. Ce travail n’est qu’un premier pas dans l’intégration des systèmes microrobotiques en milieu ambiant, mais il fournit des méthodologies de contrôle adaptées à ses spécificités. / In the past few years, much attention has been given to autonomous systems of micrometric size. The small size of these robots, or particles, makes it impossible to embed their energy sources. Wireless systems for actuating and control, in particular through magnetic effects, have been proposed. They usually operate in a liquid environment. This environment is favored due to the drag force which stabilizes a system and therefore makes it easier to control. However, this medium comes with a major limitation to the moving speed of these particles. In order to fully exploit the potential for high speed actuation inherent to the low inertia of these small-sized particles, this thesis proposes the design and control of a microrobotic system dedicated to high speed actuation.The design choices, such increasing the magnetic force, using ferromagnetic particles and choosing to work in an ambient environment increases the displacement speed. However, the dry environment leads to adhesion issues between the particle and the surface of the working substrate, and lack of knowledge-based model. Various solutions are proposed in this thesis to overcome or reduce adhesion forces in this environment, from the coupled actuation of the magnetic, to the mechanical structuring of the surface of the substrate. A closed-loop control has also been integrated to increase the accuracy of the positioning and orientation of the particles. An approach to the synthesis and implementation of a proportional regulation is proposed for the two control parameters. The chosen experimental approach makes it possible to quantify the issues related to the ambient environment and bring systematic solutions to them.This work is but a first step in the integration of microrobotic systems in ambient environments, but it offers a control methodology, which is adapted to its specificities.
|
50 |
Local Magnetic Field System Design and Control For Independent Control of Multiple Mobile MicrorobotsBenjamin V Johnson (8785979) 30 April 2020 (has links)
This dissertation describes the evolution of the different local magnetic field generating systems for independent actuation of multiple microrobots. A description of the developed hardware, system characterization tests, and experimental results are presented. The system is designed for automated control of multiple microrobots. Finally, sample micromanipulation tasks are demonstrated using the new microrobot design, showcasing its improved manipulation capabilities.<br>First, a mm-scale local magnetic field generating system designed for single layer coils is used to control 3.175 mm size N52 magnets as robots independently in the workspace. The controller used a set of local equilibrium points that were generated from a sequence of coil currents around the robots from one state to the next. The robots moved along paths computed through optimal control synthesis approach to solve complex micromanipulation tasks captured by global LTL formulas. However, the use of local equilibrium points as the states limited the motion of the robot in the workspace to simple tasks. Also, the interaction between the robots limited the robots to stay within far distances with each other. Hence a larger workspace based coil is designed to actuate up to four mm-scale robots in the workspace.<br><br>To improve the resolution of motion of these robots in the workspace, the mm-scale coils are modeled extensively. The forces generated by various coil combinations of the array are modeled and solutions for different actuation force directions are discovered for different locations in the coil. A path planning problem is formulated as a Markov decision process that solves a policy to reach a goal from any location in the workspace. The MDP formulation is also expanded to work when other robots are present in the workspace. The formulation considers the interaction force between the robots and changes the policy to reach the goal location which reduces in the uncertainty of motion of the robot in the presence of interactions from other robots in the workspace.<br><br>The mm-scale coils are difficult to scale down for microrobotic applications and hence a new microscale local magnetic field system was designed. A new microscale local magnetic field system which consisted of two 8 × 8 array of coils aligned in two axes in two layers of a PCB was designed which could actuate robots as small as 1 mm in the plane. The microcoils in the second layer are also able to generate sufficient magnetic field gradients in the workspace, while the traces below it are spaced adequately to eliminate their influence in the workspace. A new microrobot design also enabled the orientation control of the microrobot for performing micromanipulation tasks. However, only two robots could be independently actuated in this workspace due to interaction between the robots.<br><br>In pursuit of actuation smaller and multiple robots in a small workspace, a serpentine coil based local magnetic field generating system was designed to control of the motion of magnets as small as 250 µm. The net size of the robot is 750 µm to enable orientation control and prevent tipping during motion. This system is capable of simultaneous independent closed loop control of up to 4 microrobots. The motion of the robot using the coils resembled that of a stepper motor which enabled the use of sine-cosine functions to specify currents in the coils for smooth motion of the<br>microrobot in the workspace. The experiments demonstrated the capability of the microrobot and platform to simultaneously actuate up to four robots independently and successfully perform manipulation tasks. The ability to control the orientation of the magnet is finally demonstrated that has improved ability to perform manipulation tasks.<br><br>
|
Page generated in 0.1475 seconds