• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Characteristics of Murine Bone Marrow-Derived Macrophages and Human Macrophage-Like Cells

Georges, George Tharwat 01 January 2006 (has links)
These studies provide evidence for novel properties of macrophages derived from bone marrow stem cells. In study 1, treatment of activated mouse bone marrow-derived macrophages (BMM) with either catecholamine synthesis inhibitors (α-methyl-para-tyrosine and fusaric acid) or the β2 adrenergic receptor antagonist ICI 118,551 demonstrated that BMM produce catecholamines. The catecholamines modulated macrophage cytokine production through autocrine actions on adrenergic receptors. In study II, undifferentiated human bone marrow cells were incubated in 30% mouse L929 fibroblast conditioned medium and generated adherent cells within three days. The cells were clearly identifiable as macrophages based on surface proteins and phagocytic activity but produced only low levels of the cytokines tumor necrosis factor-α and interleukin-lβ. Cytokine production did not increase in response to the bacterial endotoxin lipopolysaccharide (LPS). Generation of these macrophage-like cells was not repeatable with other samples of human bone marrow, but the cells continue to proliferate in cell culture and will be investigated further in future studies.
2

Unlocking the M13 (f1 and fd) virion : investigation into the role of the pIII C-domain of F specific filamentous bacteriophage in infection : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand. EMBARGOED until 1 January 2012

Bennett, Nicholas James Unknown Date (has links)
Ff filamentous bacteriophage infect male (F+) strains of Escherichia coli and are assembled at the cell membranes, by a secretion-like, non-lethal process. The pIII protein, located at one end of the virion-filament, is required at both the beginning and the end of the phage life cycle. During infection, the N-terminal domains of pIII, N2 and N1, bind to the primary and secondary host receptors, F pilus and TolA protein, respectively. At the end of the life cycle, the pIII C-domain mediates the termination and release of virions. Thus, both entry and release involve structural transitions of the virus coupled to membrane transactions of the virion proteins. "Unlocking” of the highly stable virion presumably results in membrane integration during entry, whereas a reverse event, “locking” of the virion, occurs upon detachment from the membrane at termination step of assembly/secretion. Recently, it was shown that the pIII C-domain plays an active role at the step of entry. This finding implicates the C-domain of pIII in “unlocking” of the virion, presumably resulting in the exposure of the membrane anchor at the very C-terminus of pIII (Bennett & Rakonjac, 2006). To further this work, this thesis has mapped the portion of the pIII C-domain required for infection, by constructing a set of nested deletions of the C-domain fused to the receptor binding domains N1 and N2, and then determined the infectivity of phage carrying the mutant proteins. This mapped the portion of the C-domain required for phage infection is different to that required for termination of assembly. The different requirement for entry and release suggests that the two processes are carried out by distinct mechanisms and/or depend on different sets of accessory proteins. In addition, a system was designed for the efficient production and purification of very short virions, the length of which is 1/20 that of the wild-type f1. These short virions, called microphage, are the first step towards the structural analyses of the phage termini cap structures, of which one contains pIII in the “locked” conformation.

Page generated in 1.9096 seconds