Spelling suggestions: "subject:"neurophysiological"" "subject:"electrophysiological""
11 |
ENGINEERING DESIGN OF NOVEL 3D MICROPHYSIOLOGICAL SYSTEM AND SENSOR FOR FUNCTIONAL ASSESSMENT OF PANCREATIC BETA-CELLSEmma Vanderlaan (15348208) 25 April 2023 (has links)
<p> </p>
<p>Diabetes, a chronic condition characterized by elevated blood glucose levels, arises when pancreatic β-cells lose capacity to produce a robust, dynamic glucose-stimulated insulin secretion (GSIS) response. Accurate measurement of β-cell health and function <em>ex vivo</em> is thus fundamental to diabetes research, including studies evaluating disease mechanisms, novel drug candidates, and replacement β-cell populations. However, present-day dynamic GSIS assays typically represent end-point measurements, involve expensive commercial perifusion machines, and require time-consuming enzyme-linked immunosorbent assays (ELISA) for insulin detection. Microfluidic devices developed as accessible, low-cost alternatives still rely on secondary ELISAs and suspend islets in liquid medium, limiting their survival <em>in vitro</em>. Here, we present a novel, 3D-printed microphysiological system (MPS) designed to recreate components of <em>in-vivo</em> microenvironments through encapsulation in fibrillar type I collagen and restoration of favorable molecular transport conditions. Following computational-informed design and rapid prototyping, the MPS platform sustained collagen-encapsulated mouse islet viability and cytoarchitecture for 5 days and supported <em>in-situ</em> measurements of dynamic β-cell function. To rapidly detect insulin secretion from β-cells in the MPS, we then developed a highly sensitive electrochemical sensor for zinc (Zn2+), co-released with insulin, based on glassy carbon electrodes modified with bismuth and indium and coated with Nafion. Finally, we validated sensor detection of Zn2+ released from glucose-stimulated INS-1 β-cells and primary mouse islets, finding high correlation with insulin as measured by standard ELISA. Together, the 3D MPS and Zn2+ sensor developed in this dissertation represent novel platforms for evaluating β-cell health and function in a low-cost, user-friendly, and physiologically-relevant manner. </p>
|
Page generated in 0.0631 seconds