• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 11
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 77
  • 14
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controller design and implementation for a 6-degree-of-freedom magnetically levitated positioner with high precision

Yu, Ho 01 November 2005 (has links)
This thesis presents the controller design and implementation of a high-precision 6-degree-of-freedom (6-DOF) magnetically levitated (maglev) positioner. This high-precision positioning system consists of a novel concentrated-field magnet matrix and a triangular single-moving part that carries three 3-phase permanent-magnet linear-levitation-motor armatures. Since only a single levitated moving part, namely the platen, generates all required fine and coarse motions, this positioning system is reliable and low-cost. Three planar levitation motors based on the Lorentz-force law not only generate the vertical force to levitate the triangular platen but control the platen??s position and orientation in the horizontal plane. All 6-DOF motions are controlled by magnetic forces only. The platen is regarded a pure mass system, and the spring and damping coefficients are neglected except for the vertical directions. Single-input single-output (SISO) digital lead-lag controllers are designed and implemented on a digital signal processor (DSP). This 6-DOF fully magnetically levitated positioner has a total mass of 5.91 kg and currently exhibits a 120 mm ?? 120 mm travel range. This positioner is highly suitable for semiconductor-manufacturing applications such as wafer steppers. Several experimental motion profiles are presented to demonstrate the maglev stage??s capability of accurately tracking any planar and 3-D paths.
2

Controller design and implementation for a 6-degree-of-freedom magnetically levitated positioner with high precision

Yu, Ho 01 November 2005 (has links)
This thesis presents the controller design and implementation of a high-precision 6-degree-of-freedom (6-DOF) magnetically levitated (maglev) positioner. This high-precision positioning system consists of a novel concentrated-field magnet matrix and a triangular single-moving part that carries three 3-phase permanent-magnet linear-levitation-motor armatures. Since only a single levitated moving part, namely the platen, generates all required fine and coarse motions, this positioning system is reliable and low-cost. Three planar levitation motors based on the Lorentz-force law not only generate the vertical force to levitate the triangular platen but control the platen??s position and orientation in the horizontal plane. All 6-DOF motions are controlled by magnetic forces only. The platen is regarded a pure mass system, and the spring and damping coefficients are neglected except for the vertical directions. Single-input single-output (SISO) digital lead-lag controllers are designed and implemented on a digital signal processor (DSP). This 6-DOF fully magnetically levitated positioner has a total mass of 5.91 kg and currently exhibits a 120 mm ?? 120 mm travel range. This positioner is highly suitable for semiconductor-manufacturing applications such as wafer steppers. Several experimental motion profiles are presented to demonstrate the maglev stage??s capability of accurately tracking any planar and 3-D paths.
3

Microscale observables for heat and mass transport in sub-micron scale evaporating thin film

Wee, Sang-Kwon 30 September 2004 (has links)
A mathematical model is developed to describe the micro/nano-scale fluid flow and heat/mass transfer phenomena in an evaporating extended meniscus, focusing on the transition film region under nonisothermal interfacial conditions. The model incorporates thermocapillary stresses at the liquid-vapor interface, a slip boundary condition on the solid wall, polarity contributions to the working fluid field, and binary mixture evaporation. The analytical results show that the adsorbed film thickness and the thin film length decrease with increasing superheat by the thermocapillary stresses, which influences detrimentally the evaporation process by degrading the wettability of the evaporating liquid film. In contrast, the slip effect and the binary mixture enhance the stability of thin film evaporation. The slip effect at the wall makes the liquid in the transition region flow with smaller flow resistance and thus the length of the transition region increases. In addition, the total evaporative heat flow rate increases due to the slip boundary condition. The mixture of pentane and decane increases the length of the thin film by counteracting the thermocapillary stress, which enhances the stability of the thin film evaporation. The polarity effect of water significantly elongates the thin film length due to the strong adhesion force of intermolecular interaction. The strong interaction force restrains the liquid from evaporation for a polar liquid compared to a non-polar liquid. In the experimental part, laser induced fluorescence (LIF) thermometry has been used to measure the microscale temperature field of a heated capillary tube with a 1 mm by 1 mm square cross section. For the temperature measurement, the calibration curve between the temperature and the fluorescent intensity ratio of Rhodamine-B and Rhodamine-110 has been successfully obtained. The fluorescent intensity ratio provides microscale spatial resolution and good temperature dependency without any possible bias error caused by illuminating light and background noise usually encountered in conventional LIF techniques. For the validation of the calibration curve obtained, thermally stratified fields established inside a glass cuvette of 10 mm width were measured. The measurement result showed a good agreement with the linear prediction. The temperature measurement in a 1 mm capillary tube could provide the feasible method of temperature measurement for the thin film region in the future.
4

Microscale observables for heat and mass transport in sub-micron scale evaporating thin film

Wee, Sang-Kwon 30 September 2004 (has links)
A mathematical model is developed to describe the micro/nano-scale fluid flow and heat/mass transfer phenomena in an evaporating extended meniscus, focusing on the transition film region under nonisothermal interfacial conditions. The model incorporates thermocapillary stresses at the liquid-vapor interface, a slip boundary condition on the solid wall, polarity contributions to the working fluid field, and binary mixture evaporation. The analytical results show that the adsorbed film thickness and the thin film length decrease with increasing superheat by the thermocapillary stresses, which influences detrimentally the evaporation process by degrading the wettability of the evaporating liquid film. In contrast, the slip effect and the binary mixture enhance the stability of thin film evaporation. The slip effect at the wall makes the liquid in the transition region flow with smaller flow resistance and thus the length of the transition region increases. In addition, the total evaporative heat flow rate increases due to the slip boundary condition. The mixture of pentane and decane increases the length of the thin film by counteracting the thermocapillary stress, which enhances the stability of the thin film evaporation. The polarity effect of water significantly elongates the thin film length due to the strong adhesion force of intermolecular interaction. The strong interaction force restrains the liquid from evaporation for a polar liquid compared to a non-polar liquid. In the experimental part, laser induced fluorescence (LIF) thermometry has been used to measure the microscale temperature field of a heated capillary tube with a 1 mm by 1 mm square cross section. For the temperature measurement, the calibration curve between the temperature and the fluorescent intensity ratio of Rhodamine-B and Rhodamine-110 has been successfully obtained. The fluorescent intensity ratio provides microscale spatial resolution and good temperature dependency without any possible bias error caused by illuminating light and background noise usually encountered in conventional LIF techniques. For the validation of the calibration curve obtained, thermally stratified fields established inside a glass cuvette of 10 mm width were measured. The measurement result showed a good agreement with the linear prediction. The temperature measurement in a 1 mm capillary tube could provide the feasible method of temperature measurement for the thin film region in the future.
5

Detection and Manipulation of Bioparticles with Micro-Electro-Mechanical Systems and Microfluidics

Sun, Mingrui January 2017 (has links)
No description available.
6

The fluid-coupled motion of micro and nanoscale cantilevers

Carvajal, Carlos 03 January 2008 (has links)
An understanding of the fluid coupled dynamics of micro and nanotechnology has the potential to yield significant advances yet many open and interesting questions remain. As an important example we consider the coupling of two closely spaced cantilevers immersed in a viscous fluid subject to an external driving. While one cantilever is driven to oscillate, the adjacent cantilever is passive. This system is modeled as two simple harmonic oscillators in an array whose motion is coupled through the fluid. Using simplified geometries and the unsteady Stokes equations, an analytical expression is developed that describes the dynamics of the passive cantilever. Full numerical simulations of the fluid-solid interactions that include the precise geometries of interest are performed. The analytical expressions are compared with the numerical simulations to develop insight into the fluid-coupled dynamics over a range of experimentally relevant parameters including the cantilever separation and frequency based Reynolds number. In addition, a shaker-based actuation device is investigated in order to demonstrate its feasibility for use with micro and nanoscale systems. / Master of Science
7

Growth dynamics of braided gravel-bed river deltas in New Zealand

Wild, Michelle Anne January 2013 (has links)
This research has been undertaken to further our knowledge of decade-to-century timescale braided, gravel-bed river delta growth dynamics. The study included: a review of available literature; field studies; the development of microscale models for two study deltas; and the development of a simple numerical model incorporating movement of braided river channels across a delta topset (varying the location of sediment delivery to the delta). Results from the microscale modelling showed that successful physical modelling requires well-defined fixed boundaries and, ideally, good historical aerial photography for the estimation of the model time scale. A complex braided gravel-bed river delta system composed of two merging deltas entering a deep, low-energy receiving basins was able to be successfully modelled to provide valuable information on delta growth dynamics. However, a microscale model of a delta prograding into shallow receiving basins, with a large supply of fine sediment, was more difficult to calibrate and assess (partly due to limited field data), and was considered less reliable. The simple rule-based numerical model ‘DELGROW’, developed to simulate a braided river system entering a deep, low-energy body of water, requires a known sediment supply rate, as well as information on the braided river topography, submerged delta foreset, and lakebed bathymetry. Unlike simple 1-d width-averaged geometric models, DELGROW takes into consideration barriers (e.g. islands) as well as relatively complex converging braided river delta configurations. By changing the sediment supply, or modifying the river system, the response of the river system to various scenarios can also be assessed. Microscale models and DELGROW appear to realistically simulate decade-to-century timescale growth of braided gravel-bed river deltas entering a deep, low-energy, receiving basin. Both of these modelling methods initially use the supplied sediment to try and eliminate any riverbed irregularities (e.g. low areas), before continuing to advance and deposit sediment in a more evenly-distributed manner, whilst taking into consideration irregularities due to barriers, and asymmetric sediment sources such as merging deltas. Neither model can reliably predict locations of bank erosion, or channel avulsions that divert flow and sediment outside of the fixed model boundaries.
8

Two-junction holographic spectrum-splitting microconcentrating photovoltaic system

Wu, Yuechen, Kostuk, Raymond K. 17 February 2017 (has links)
Spectrum-splitting is a multijunction photovoltaic technology that can effectively improve the conversion efficiency and reduce the cost of photovoltaic systems. Microscale PV design integrates a group of microconcentrating photovoltaic (CPV) systems into an array. It retains the benefits of CPV and obtains other benefits such as a compact form, improved heat rejection capacity, and more versatile PV cell interconnect configurations. We describe the design and performance of a two-junction holographic spectrum-splitting micro-CPV system that uses GaAs wide bandgap and silicon narrow bandgap PV cells. The performance of the system is simulated with a nonsequential raytracing model and compared to the performance of the highest efficiency PV cell used in the micro-CPVarray. The results show that the proposed system reaches the conversion efficiency of 31.98% with a quantum concentration ratio of 14.41x on the GaAs cell and 0.75x on the silicon cell when illuminated with the direct AM1.5 spectrum. This system obtains an improvement over the best bandgap PV cell of 20.05%, and has an acceptance angle of +/- 6 deg allowing for tolerant tracking. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
9

Non-Contact Microscale Manipulation using laser-induced convection flows

Vela Saavedra, Emir Augusto 28 May 2010 (has links) (PDF)
This work relates to the automated parallel manipulation of parts at sub-millimeter scale and is a part of EU funded GOLEM Project. The main challenge at this scale is to develop novel methods for high throughput parallel assembly of components of a few hundreds of micrometers. At this scale, a serial approach would be extremely limited by the requirements on precision, speed ans especially by the particularities of physics. The proposed approach in this work is opto-fluidic, based on the Marangoni effect, a convective fluidic phenomena. The Marangoni effect is explored and analyzed both theoretically and experimentally. An experimental set-up is designed and constructed in this purpose. These studies show the advantages of the proposed approach for high speed manipulation of microcomponents in different sizes and geometries. The manipulation set-up is also entirely automated in order to show the parallel manipulation capabilities of this novel assembly technique. The first chapter gives an overview of contactless manipulation techniques at microscale, such as optical tweezers, electric field, dielectrophoresis, acoustic waves and thermal motion based techniques. A comparison of the techniques points Marangoni effect as a viable solution. The second chapter deals with the theoretical analysis of two convection phenomena: free convection and B'enard-Marangoni convection. This through a multi-physics finite elements based modeling. The governing equations for these phenomena are presented based on the fluid dynamics laws. A Proposed model is applied on a simple case of natural convection for initial analysis. Several simulations and their experimental validations are presented. Different parameters are analyzed such as water depth, temperature distribution and velocity field. Finally, a comparison between these phenomena is presented to know which mechanism predominates and is more suitable in our case. The Marangoni effect is presented as a promising method to drag micro-objects immersed in liquid media using only an IR laser beam as a heat source. This analysis allowed us to define the parameters for a conception of an experimental set-up for non-contact manipulation. The third chapter describes the design of this above mentioned robotic platform. This platform is composed of several components: an optical microscope, a laser source as local thermal source, a scanner to address the laser with precision and other electronics. A vision system, using a high speed camera is also implemented. A calibration of this vision system is established in order to define the available precision of the overall system, dimensions and measurable velocities of manipulated parts by experimental analysis. This approach also allows to measure instantaneous acceleration values and leads to the estimation of the force applied to manipulated objects. The fourth chapter deals with the automation of the manipulation process. The aim is to show that the proposed system is able to displace several microparts to predefined positions without user interaction. Particularly, the control of the Marangoni effect through the control of the position of the local heat source is demonstrated. The motion of this local thermal source is supplied by reflecting a laser beam on a mirror controlled by a high speed scanner. The implemented automation allows for a real time and high speed control hence it is possible to act simultaneously on several parts. The control loop is closed with vision feedback which is able to track at high frequency and sufficient precision all the involved parts at different form and dimensions. An experimental validation of parallel manipulation is describes and shows the originality of the proposed approach.
10

Stochastic Simulation of Reaction-Diffusion Processes

Hellander, Stefan January 2013 (has links)
Numerical simulation methods have become an important tool in the study of chemical reaction networks in living cells. Many systems can, with high accuracy, be modeled by deterministic ordinary differential equations, but other systems require a more detailed level of modeling. Stochastic models at either the mesoscopic level or the microscopic level can be used for cases when molecules are present in low copy numbers. In this thesis we develop efficient and flexible algorithms for simulating systems at the microscopic level. We propose an improvement to the Green's function reaction dynamics algorithm, an efficient microscale method. Furthermore, we describe how to simulate interactions with complex internal structures such as membranes and dynamic fibers. The mesoscopic level is related to the microscopic level through the reaction rates at the respective scale. We derive that relation in both two dimensions and three dimensions and show that the mesoscopic model breaks down if the discretization of space becomes too fine. For a simple model problem we can show exactly when this breakdown occurs. We show how to couple the microscopic scale with the mesoscopic scale in a hybrid method. Using the fact that some systems only display microscale behaviour in parts of the system, we can gain computational time by restricting the fine-grained microscopic simulations to only a part of the system. Finally, we have developed a mesoscopic method that couples simulations in three dimensions with simulations on general embedded lines. The accuracy of the method has been verified by comparing the results with purely microscopic simulations as well as with theoretical predictions. / eSSENCE

Page generated in 0.0554 seconds