• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS

Wurth, Timothy J., Rodzinak, Jason 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Meeting the filtering requirements for telemetry transmitters and receivers can be challenging. Telemetry systems use filters to eliminate unwanted spurious or mixing products. The use of tunable microwave filters for both L and S Band can improve filter selectivity and provide low insertion losses in the filter passband. Along with meeting specifications, these microwave filters with the ability to tune an octave, reduce size and cost by the reduction of multiple, fixed-frequency filters. As size, weight and power are often a concern with aeronautical telemetry systems, this paper will demonstrate that microstrip tunable filters can be small in size and use minimal power. Telemetry transmitters are subject to difficult spurious emission and interference specifications and require selective filters to eliminate spurious signals before the final amplification. Telemetry receivers on the other hand are subject to intense Image and Local Oscillator (LO) rejection requirements and demand low insertion loss for front-end filtering. Low insertion loss filtering before the Low Noise Amplifier (LNA) circuit limits degradation to the system noise figure (NF). By using different filter topologies and state-of-the-art, high-Q varactor diodes, tunable microwave filters can be optimized for two different functions. The two functions emphasize either low insertion loss or selectivity. An important design consideration with tunable filters, when compared to typical fixed frequency filters, is the degraded intermodulation performance. This is largely due to the non-linear behavior of the varactor diodes. This paper describes the benefits and limitations of microwave tunable filter architectures suitable for both aeronautical telemetry transmitters and telemetry receivers. Information on the computer modeling of varactor diodes will be covered as a critical part of the design. Potential design considerations for microwave tunable filters will also be covered. Through the use of simulation software and filter prototypes, this paper presents dramatically improved filter performance applicable to telemetry transmitters and receivers.
2

Compact Microstrip Filter Designs and Phased Array for Multifunction Radar Applications

Jung, Dong Jin 2012 May 1900 (has links)
This dissertation mainly discuses various microstrip bandpass filter (BPF) designs. The filter designs include: a coupled line BPF using nonuniform arbitrary image impedances, miniaturized BPF utilizing dumbbell shaped slot resonator (DSSR), BPF employing isosceles triangle shaped patch resonator (ITSPR), BPF with a complimentary split ring resonator (CSRR) and triple-band BPF (TBBPF). In the coupled line BPF designs, a capacitive gap-coupled BPF and parallel coupled line BPF are introduced, where two different arbitrary image impedances are applied for the designs. Based on the proposed equivalent circuit model, the coupled BPF's design equations are derived, and they are validated from comparisons of the calculated and simulated results. For a miniaturized BPF, the DSSR is utilized in the filter design. An equivalent circuit model of the DSSR is also presented and validated through simulations and measurements. The ITSPR is introduced for simple BPF and diplexer designs. The ITSPR's design equations, effective dielectric constant, and fractional bandwidth are discussed, and their validities are demonstrated from electromagnetic (EM) simulations and measurements. The coupled type complementary split ring resonator (CSRR) is introduced for a compact direct-coupled BPF. The proposed unit cell of the resonator consists of two CSRRs, where gaps of outside rings face each other to achieve a strong cross coupling. For an analysis of the coupled CSRR, an equivalent circuit model is discussed and validated through circuit and EM simulations. Based on the coupled CSRR structure, two-/four- pole direct-coupled BPFs are designed, simulated, and measured. The TBBPF design using admittance inverters are presented. In the TBBPF design, the center frequencies and fractional bandwidths (FBW) of each passband can be adjustable. Low cost phased array systems operating from 8 to 12 GHz are introduced. A phased array using a piezoelectric transducer (PET) phase shifter is designed and tested. Compared to the phased array using the PET phase shifter, another phased array utilizing 4-bit monolithic microwave integrated circuit (MMIC) phase shifters is demonstrated. Both phased array systems are simple and easy to fabricate.
3

Nízkošumové zesilovače pro pásmo 1-3 GHz / Low Noise Amplifiers for frequency range 1-3 GHz

Klegová, Hana January 2017 (has links)
This masters thesis deals with low noise amplifier design for frequency range 1 GHz - 3 GHz. There is a short theoretical introduction in the first part of the thesis. There are described parameters and properties of transistors and general two-ports. Description of the noise characteristics two-ports follows. The next capture contains design of two-stage amplifiers. One of them is with a microstrip filter between stages and the second one is with combline filter on input of the amplifier. The amplifiers and the microstrip filter were designed in program ANSOFT Designer. The design of combline filter was realised in program CST Microwave Studio. Both amplifiers ware made and their properties ware compared with simulations.

Page generated in 0.0885 seconds