• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 16
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Internal tide scattering at midocean topography

Johnston, Thomas Michael Shaun. January 2003 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2003. / Includes bibliographical references (leaves 65-68).
22

Geochemistry of Dikes and Lavas from Tectonic Windows

Pollock, Meagen Ann, January 2007 (has links)
Thesis (Ph. D.)--Duke University, 2007. / Includes bibliographical references.
23

Age, chemistry, and tectonic significance of Easter and Sala y Gomez Islands

Clark, James Gregory. January 1975 (has links)
Thesis (M.S.)--Oregon State University, 1975. / Includes bibliographical references (leaves 87-94).
24

Oceanic transform boundaries rheology, dynamics, and the age offset limit /

Sheaffer, Steven D. January 1995 (has links)
Thesis (M.S.)--Pennsylvania State University, 1995. / Includes bibliographical references (leaves 68-70).
25

Tectonic consequences of mid-ocean ridge evolution and subduction

Whittaker, Joanne. January 2008 (has links)
Thesis (Ph. D.)--University of Sydney, 2008. / Includes graphs and tables. Includes list of publications. Title from title screen (viewed December 16, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Division of Geology and Geophysics, School of Geosciences, Faculty of Science. Includes bibliographical references. Also available in print form.
26

The response of two-phase hydrothermal systems to changing magmatic heat input at mid-ocean ridges

Choi, Jaewoon 24 April 2013 (has links)
Hydrothermal processes at oceanic spreading centers are largely influenced by changing magmatic heat input. I use the FISHES code to investigate the evolution of surface temperature and salinity as a function of time-varying heat flux at the base of a two-phase, vapor-brine hydrothermal system. I consider a two-dimensional rectangular box that is 1.5 km deep and 4 km long with homogeneous permeability. Impermeable, insulated conditions are imposed on the left and right hand boundaries. To simulate time-varying heat flux from a sub-axial magma chamber of 500 m long half-width, I consider a variety of basal boundary conditions: (1) a constant heat flux with an value of 130 W/m2; (2) a sinusoidal heat flux with a period of 6 years and an amplitude ranging between 100 and 50 W/m2; (3) step, random, and exponential heat fluxes ranging between 200 and 15 W/m2; and (4) an analytical function of temporally decaying heat flux resulting from a simulated cooling, crystallizing magmatic sill. As a result of the investigation I find: (1) changes in bottom temperature and salinity closely follow the temporal variations in magmatic heat inputs; (2) the surface temperature response is severely damped and high frequency variations in heat flow are not detected; (3) in regions where phase separation of vapor and brine occurs, surface salinity variations may be recorded in response to changing conditions at depth, but these are smaller in amplitude. / Master of Science
27

Exploring the relationship between crustal permeability and hydrothermal venting at mid-ocean ridges using numerical models

Singh, Shreya 16 June 2015 (has links)
Hydrothermal systems associated with oceanic spreading centers account for a quarter of Earth's total heat flux and one third of the heat flux through the ocean floor. Circulation of seawater through these systems alters both the crust and the circulating fluid, impacting global geochemical cycles. The warm vent fluids rich in nutrients support a wide variety of unique biological communities. Thus, understanding hydrothermal processes at oceanic spreading centers is important to provide insight into thermal and biogeochemical processes. In this dissertation I present the results of numerical modeling efforts for mid-ocean ridge hydrothermal systems. In the three manuscripts presented, permeability emerges as a key controlling factor for hydrothermal venting. In the first manuscript, I use 2-D numerical models to find that the distribution of permeability in the crust controls fluid velocity as well as the amount of mixing between hot hydrothermal fluids and cold seawater. This, in turn, effects the temperature and composition of fluids emerging on the surface. For the second manuscript, I construct single-pass 1-D models to show that a sudden increase in permeability caused due to magmatic or seismic events in the seafloor causes a sharp rise in the fluid output of the system. This, in conjunction with steep thermal gradients close to the surface, results in a rapid increase of venting temperatures. In the third manuscript, I develop a particle tracking model to study fluid trajectories in the subsurface. The results show that permeability distribution in the subsurface governs fluid paths and consequently, the residence time of fluids in the crust. Based on the work presented in this document, I conclude that permeability distribution, both local and field scale, exerts a major control on hydrothermal circulation in the subsurface and on the temperature and composition of venting fluids on the surface. / Ph. D.
28

Effect of seismicity and diking on hydrothermal circulation at mid-ocean ridges

Ramondenc, Pierre 04 January 2008 (has links)
Seafloor hydrothermal systems play a key role in Earth s energy and geochemical budgets. They also support the existence and development of complex chemosynthetic biological ecosystems that use the mineral-laden fluids as a source of energy and nutrients. This dissertation focuses on two inter-related topics: (1) the heat output at mid-ocean ridge (MOR) hydrothermal sites, and (2) the hydrothermal response to earthquakes at mid-ocean ridges. The response of mid-ocean ridge hydrothermal systems to seismic and magmatic activity could provide a means of using seafloor observations to assess processes occurring at crustal depths. Three decades of study of the ocean floor have made clear that tectonic/volcanic perturbations and changes in the hydrothermal activity are correlated. Yet, this relationship is still highly misunderstood. In this dissertation, we developed a mathematical model of hydrothermal circulation affected by magmatic and/or tectonic events occurring at depth. We showed that the perturbations they generate need not propagate through the entire upflow zone, as previously suggested, but need only affect the movement of the boundary layers. In this case, the fluid residence time in the discharge zone is on the order of years. The determination of heat output at MOR hydrothermal sites provides important constraints on the physics of these processes. Yet, such measurements are still very limited, available only for ~30 sites out of the ~10^3 estimated worldwide. This dissertation reports the first measurements of hydrothermal heat output at 9°50' N on the East Pacific Rise (EPR), which has been the most intensively studied site for the past 20 years (~10^2 expeditions). The values we obtained helped constraining the afore-mentioned mathematical model, which was tested based on the March 1995 microearthquake swarm near 9°50' N, EPR. Our results showed that the current interpretation based on a thermal cracking episode at the bottom of the upflow zone, may be incorrect. We argue that a diking scenario better explains the seismic and temperature data, while being consistent with the mechanics of inflation of the axial magma chamber in the 9°50' N, EPR area between two major eruptions, in 1991 and 2006.
29

Novel Insights into Mass and Energy Transfer and Mid-Ocean Ridges from Seismic Imaging of the East Pacific Rise and Juan de Fuca Ridge

Arnoux, Gillean 30 April 2019 (has links)
In this dissertation, I use seismic imaging and waveform modeling methods to investigate melt migration processes and the structure of the magma plumbing system beneath the East Pacific Rise (EPR) and Endeavour segment of the Juan de Fuca Ridge, respectively. This work begins by studying shallow mantle reflections beneath the EPR. I find the amplitude versus offset and waveform characteristics of the reflections to be consistent with a sub-horizontal dunite channels located up to 20 km off-axis. The depth of the dunite channels correlate with patterns of mantle melt delivery and the predicted base of the thermal lithosphere, suggesting the channels are thermally controlled and may have formed in situ via dissolution by focused flow at the base of the lithosphere. This interpretation is consistent with field observations in ophiolites and numerical modeling of melt-focusing channels. The three-dimensional velocity structure of the Endeavour segment is then investigated to identify how patterns of mantle melt delivery influence the segment-scale distribution of crustal melt and crustal accretion. The results from this study indicate that the mantle magmatic system is skewed relative to the ridge-tracking crustal magmatic system and that this skew exerts primary control on magmatic, tectonic, and hydrothermal activity at the Endeavour segment. In regions where mantle melt delivery is axis-centered, mantle-derived melts are efficiently transported from the mantle to the crust, resulting in frequent crustal melt replenishment, associated seismogenic cracking, and enhanced crustal melt content that drives vigorous hydrothermal activity. Conversely, sites of off-axis melt delivery are characterized by less efficient vertical melt transport, resulting in infrequent crustal melt injection and hence, reduced crustal melt content and hydrothermal activity. Next, I focus on how along-axis variations in magma replenishment modulate crustal permeability and the intensity of hydrothermal circulation. Using full-waveform inversion, I show that sites of localized magma replenishment to the axial magma lens, along with induced seismogenic cracking, coincide with enhanced permeability. I conclude that the frequency of magma injection governs hydrothermal circulation patterns and heat flux at mid-ocean ridges. This dissertation includes previously published and unpublished coauthored material.
30

Helium isotope variations in peridotite, gabbro and basalt from the Kane Oceanic Core Complex

Konrad, Kevin 05 October 2012 (has links)
The Kane Oceanic Core Complex (OCC) is a valuable window into crustal architecture and chemical composition of the lithosphere beneath a slow-spreading ocean ridge. A suite of > 30 samples (comprised of whole rocks, mineral separates and basalt glasses) has been analyzed for ��He/���He isotope ratios and He concentrations. Gas extraction experiments included crushing in vacuum, step heating and fusion in a high-vacuum furnace. We found ��He/���He in the two freshest peridotites (harzburgite and olivine websterite) to be identical to ratios measured in basalt glasses collected from the Kane fracture zone-ridge axis intersection (8.4���8.7 R[subscript A]). Notably, the freshest and least deformed peridotite (a porphyroclastic harzburgite) has the highest helium content of any of the OCC ultramafic rocks (170 ncc STP/g), while the majority of its helium (70%) is released only upon melting. Lower helium contents (1-45 ncc STP/g) and more variable ��He/���He (2.0-6.3 R[subscript A]) are found in other more altered/deformed peridotite samples (whole rocks, clinopyroxene and orthopyroxene separates). For example, three mylonitized peridotites have lower helium contents compared to the less deformed peridotites. Troctolite intrusions from the Adam and Eve Domes appear to record very late-stage melt impregnation fed through dunite conduits near the MOHO. ��He/���He in these troctolites overlaps with values in the fresh peridotites and axial basalts, but extends to slightly higher values (8.6-9.0 RA). Collectively, fresh Kane peridotites and troctolites having He concentrations above 10 ncc STP/g show ��He/���He ratios of 8.4-9.0 RA that are higher than the median value (8.0-8.2 R[subscript A]) for mid-ocean ridge basalts. This suggests that domains of depleted upper mantle in the Kane region tend to have ��He/���He ratios of 9 RA or higher, similar to what is observed in the most trace-element depleted MORBs globally. Kane gabbroic rocks are more variable in 3He/���He. A subset of gabbros show systematically lower ��He/4He ratios (0.9-7.2 R[subscript A]), with He concentrations of 1-24 ncc STP/g, reflecting the increased importance of atmospheric and radiogenic components in several cases. Nonetheless, two whole rock gabbroic samples plus an amphibole separate have ��He/���He ratios of 7.6-8.0 R[subscript A] and He contents between 13 and 57 ncc STP/g. Variation in the sampling of a lithologically heterogeneous mantle source by the partial melting process may account for the observed ��He/���He variability of 7.6-9.0 R[subscript A] in peridotite, gabbro and basalt in the Kane area. / Graduation date: 2013

Page generated in 0.0522 seconds