• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La formine Diaphanous est essentielle pour l’organisation et la maturation de l’anneau contractile pendant la cytokinèse

Ruella, Yvonne 12 1900 (has links)
Une cellule se divise en deux par le processus de cytokinèse. Elle requiert la coordination de plusieurs composants pour éviter la formation des cellules potentiellement cancéreuses. Premièrement, un anneau contractile (AC) dépendant de l’actine et de Rho-GTP diminue le diamètre de la cellule jusqu’à la formation d’une structure plus stable indépendante de l’actine, l’anneau du midbody (AM) qui guide l’éventuelle séparation des cellules sœurs. Diaphanous (Dia) est une formine dépendante de Rho responsable de l’agencement des filaments d’actine non ramifiés qui se localise à l’AC et est essentielle à la cytokinèse. Nous avons étudié le rôle de Dia pendant la cytokinèse par microscopie de haute résolution en temps réel pour suivre le comportement dynamique des protéines fluorescentes (PF) dans des cellules de Drosophile S2. Une construction fonctionnelle de Dia-PF est recrutée à l’AC et l’AM indépendamment de l’actine mais est absente dans l’AM mature. Dia quitte l’AM au même temps où l’AM dévient indépendant d’actine. La déplétion de Dia par ARN interférant ralentit la constriction de l’AC, augmente les oscillations et, dans 70% des cas, les cellules échouent la cytokinèse pendant la constriction, suggérant que Dia a un rôle dans l’organisation de l’AC. LifeAct-PF, une sonde pour F-actine, dévoile une diminution des filaments d’actine spécifique à l’AC des cellules dépourvues de Dia pendant que Anilline-PF et Myosine-PF sont recrutées en puncta. Ces résultats soutiennent un modèle où Dia nuclée des filaments d’actine qui permettent l’organisation dynamique de l’AC et la perte de Dia régule la transition à l’AM stable indépendant d’actine. / Cytokinesis is the intricate process by which eukaryotic cells divide in two. It involves the coordination of many components in order to avoid the formation potentially cancerous cells. Initially, a Rho GTPase- and actomyosin-dependent contractile ring (CR) drives constriction at the cell equator until a stable actin-independent midbody ring (MR) forms and ultimately guides the separation of the two sister cells. Diaphanous (Dia), is a Rho-dependent formin that nucleates unbranched actin filaments, localises to the cleavage furrow and is required for cytokinesis. We have examined the role of Dia during cytokinesis by time lapse video microscopy of Drosophila S2 cells expressing markers tagged with fluorescent proteins (FPs). A functional Dia-FP was recruited to the CR independently of actin and stayed in the nascent MR, but was absent from the mature MR. The timing of its disappearance coincided with the transition of the MR to an actin-independent structure. RNAi-mediated depletion of Dia slowed furrow ingression, enhanced furrow oscillations and, in 70% of the failures, prevented furrow completion, consistent with a role for Dia in CR organization. The F-actin probe, LifeAct-FP, revealed a decrease in F-actin in Dia-depleted cells specifically at the CR while Anillin-FP and Myosin-FP were aberrantly recruited in punctate structures. Our findings are consistent with a model in which Dia nucleates actin filaments at the CR to maintain the dynamic organization of the actin-dependent CR and that the regulated loss of Dia from the nascent MR guides the formation of the stable, actin-independent MR.
2

Caractérisation du rôle de Citron Kinase durant la cytokinèse

El-Amine, Nour 12 1900 (has links)
La cytokinèse est un processus dont le but est une séparation de deux cellules soeurs en deux entités suite à une mitose. La cytokinèse nécessite la formation d’un anneau contractile (AC) qui va conduire un sillon de clivage vers une ingression à l’équateur de la cellule. L’une des étapes critiques de ce processus est la transition d’un AC dynamique vers une structure stable surnommée l’anneau du midbody (AM), organelle qui va guider la cellule vers l’abscision. La compréhension des mécanismes moléculaires impliqués dans cette transition nous permettrait de mieux comprendre les complexes protéiques impliqués autant au niveau de l’initiation qu’à la terminaison de la cytokinèse. Des défauts ayant lieu lors de cette transition mènent à la formation de cellules binucléées tétraploïdes qui sont observées dans plusieurs pathologies comme le cancer. Afin d’approfondir nos connaissances à ce sujet j’ai utilisé un modèle d’imagerie optique en temps réel dans un modèle cellulaire de Drosophila melanogaster : les cellules S2 de Schneider. Ces études ont mis l’emphase sur un nouveau mécanisme de maturation de la transition AC/AM. Nous avons pu démontrer que la kinase Citron, Sticky, et la septine, Peanut, agissent de manière opposée sur la protéine Anillin pour retenir ou éliminer, respectivement, la membrane plasmique lors de la transition AC/AM. En effet, la diminution d’expression de Sticky par ARNi engendre une perte de contrôle de rétention membranaire de l’AM. À l’inverse, la diminution d’expression de Peanut inhibe la maturation par excrétion membranaire de l’AM. La diminution d’expression simultanée de Sticky et de Peanut conduit l’AC vers des mouvements oscillatoires typiques d’une instabilité de l’AC suite à la perte de fonction de l’Anillin. Sticky est une protéine corticale lors de la cytokinèse dont le rôle et les partenaires d’interaction restent controversés. Pour approfondie nos connaissance de ce sujet, nous avons effectué une étude structurelle et fonctionnelle de Sticky. Cette étude démontre que Sticky possède deux mécanismes de localisation corticale. Le premier dépend de l’Anillin et le deuxième dépend de la petite GTPase Rho1, le régulateur maître de la cytokinèse. Sticky est capable de se localiser à l’AC en présence de l’un ou l’autre de ces deux mécanismes, mais chacun semble être essentiel pour la réussite de la cytokinèse. Le domaine minimal d’interaction entre la Sticky et l’Anillin a été identifié. Une version d’Anillin qui manque le site de liaison à la Sticky est incapable de supporter l’achèvement de la cytokinèse, et les cellules échouent la cytokinèse d’une manière semblable aux cellules dont l’expression de Sticky est diminuée. Similairement, les cellules exprimant une protéine Sticky mutée au site d’interaction avec Rho1-GTP, sont incapables de compléter la cytokinèse lorsque les niveaux endogènes de Sticky sont diminués par ARNi. Ceci suggère que Sticky agit avec Anillin et Rho1 au niveau du cortex pour guider la transition d’un AC dynamique vers un AM stable. Par la mise en évidence et la caractérisation d’un nouveau mécanisme moléculaire essentiel à la cytokinèse, cette thèse constitue des avancements importants au niveau de la cytokinèse. / Cytokinesis is a multistep process that allows two sister cells to undergo complete separation following mitosis. Cytokinesis requires the formation of a contractile ring (CR) that will drive cleavage furrow ingression at the equator of the cell. One of the crucial steps in this process is the transition from a dynamic CR to a more stable structure named the midbody ring (MR), which directs the final separation or abscission. Our knowledge of the molecular mechanisms involved in the CR-to-MR transition would presumably improve our understanding of the molecular complexes involved throughout cytokinesis from initiation to abscission. Defects that occur during this transition can lead to the formation of bi-nucleate tetraploid cells that are often observed in pathological conditions such as cancer. I have used Drosophila melanogaster Schneider’s S2 cells to study the CR-to-MR transition. My findings have highlighted a previously uncharacterized maturation process essential for the transition. More specifically, I demonstrate that the Citron Kinase, Sticky, and the Septin, Peanut, have opposing actions on the scaffold protein Anillin to either retain or extrude, respectively, membrane-positive proteins during the CR-to-MR transition. Indeed, Sticky depletion by RNAi led to uncontrolled loss of membrane-associated Anillin at the MR. Conversely, Peanut depletion led to inhibition of MR maturation by membrane extrusion. Co-depletion of Sticky and Peanut led to oscillatory movements of the CR, typical of Anillin depletion. Sticky is a cortical protein during cytokinesis whose role and interacting partners are controversial. I have performed a structure/function analysis of Sticky to better define its role and regulation during cytokinesis. My work shows that Sticky has two mechanisms of cortical localization. The first is through an Anillin interaction and the second is through the small GTPase Rho1, a master regulator of cytokinesis. Sticky can localize to the cortex in the absence of either one of these mechanisms. However, loss of both inhibits its localization. Following the identification of the minimal interaction sites of Anillin and Sticky, I expressed an Anillin mutant that lacked part of this site and found that cells failed cytokinesis in a similar manner to cells depleted of Sticky. Mutation of the Rho1 binding site on Sticky produced similar cytokinesis failures. Altogether, the results suggest that Sticky interacts with Anillin and Rho1 at the cortex to guide the transition from dynamic CR to stable MR. This thesis advances our understanding of cytokinesis by highlighting a previously uncharacterized process of MR maturation and by defining the importance and regulation of Citron Kinase during this process.
3

Cytodiérèse des cellules épithetiales et maintien de l'intégrité du tissu chez Drosophila melanogaster / Epithelial cells cytokinesis and maintenance of tissue integrity in Drosophila melanogaster

Daniel, Emeline 15 December 2017 (has links)
Les cellules épithéliales forment un tissu de cellules étroitement juxtaposées qui assure une barrière physique et chimique entre les compartiments internes et externes du corps. L’intégrité de ces tissus est donc essentielle. Au cours du développement et de la vie adulte, le tissu doit grandir ou se régénérer, ce qui implique de nombreuses divisions cellulaires. La dernière étape de la division, la cytodiérèse, met en jeu la formation d’un anneau contractile qui, en se fermant, va séparer les cellules sœurs. Une fois complètement fermé, il donne naissance au midbody, juste sous le niveau des jonctions adhérentes, au sein des jonctions septées, chez la drosophile. L’ultime étape, l’abscission, permet la séparation physique définitive et l’isolation cytoplasmique des cellules sœurs. Si de nombreuses études ont décrit ces processus dans les cellules isolées, peu de choses sont connues quant à la cytodiérèse des cellules épithéliales. Ce travail de thèse a permis de mettre en évidence que malgré le recrutement de tous les effecteurs et régulateurs de l’abscission, celle-ci est retardée dans les cellules épithéliales. Des expériences de photo-conversion de KAEDE ont montré que l’abscission est liée à l’entrée en mitose des cellules épithéliales. La question de l’intégrité du tissu et notamment de la barrière de perméabilité a ensuite été investigué. Nous avons montré que les cellules voisines formaient des protrusions de membrane restant connectées au midbody tout au long de sa lente migration vers le pôle basal des cellules. Les expériences de FRAP menées sur les jonctions bicellulaires et tri-cellulaires des jonctions septées ont permis de montrer que celles-ci se formaient juste sous les jonctions adhérentes et toujours au-dessus du midbody, participant ainsi à la migration de ce dernier vers le pôle basal. Les contacts maintenus avec les voisines ainsi que l’assemblage polarisé des jonctions septées participent au maintien de l’intégrité du tissu au cours des divisions de cellules épithéliales. / Epithelial cells are closely juxtaposed to form a tissue playing a physical and chemical barrier between external and internal body compartments. Thus, tissue integrity is essential. During development and adult life, epithelia has to growth and regenerate meaning a lot of divisions. At the end of cell division, cytokinesis occurs, implying the formation of a contractile ring which contracts to separate daughter cells. In Drosophila, once totally closed, the contractile ring gives rise to the midbody, just below adherens junctions, in the septate junctions layer. Last step of cytokinesis, abscission, permits the final cut and the cytoplasmic isolation of daughter cells. If cytokinesis is well described in isolated cells, little is known about epithelial cells cytokinesis. This work shows that whereas all abscission regulators and effectors are recruited, abscission is delayed in epithelial cells. KAEDE photo-conversion assays show that abscission is linked to epithelial cells mitosis entry. Then we investigate how permeability barrier is maintained during cell division. We show that neighboring cells present finger-like protrusions contacting the midbody all along the midbody is moving basally across septate junctions. FRAP experiments on bicellular and tricellular septate junctions show that they form just below adherens junctions and always above the midbody, leading to its basal migration. Contacts maintained with neighbors and polarized assembly of septate junctions participate to the maintenance of tissue integrity throughout epithelial cells divisions.
4

Biogenesis of the C. elegans germline syncytium: from nucleation to maturation

Amini, Rana 07 1900 (has links)
No description available.
5

L'implication de la Cycline B dans le processus de cytocinèse

Diaz, Mélanie 11 1900 (has links)
Un dérèglement du cycle cellulaire peut causer le cancer. Lors de la cytocinèse un anneau contractile d’actine et de myosine se forme, se contracte, et donne un anneau du midbody qui mène à l’abscision. Le processus de cytocinèse est sous le contrôle de protéines telles que la GTPase Rho qui active la cytocinèse et les cyclines-Cdks qui l'inhibent. La Drosophile possède 3 cyclines mitotiques CycA/ CycB/ CycB3 qui sont successivement dégradées en fin de mitose et permettent l'initiation de la cytocinèse. La dernière étape d’abscission est un phénomène qui reste encore peu connu. Les protéines Vps4 et CHMP4C liées à ANCHR vont, sous la dépendance de la kinase Aurora B, promouvoir l’abscision mais, suite à quelques études récentes, il semble y avoir une implication de la cycline B. Ici, le but était de tester l’implication de cette cycline dans les processus de cytocinèse et d’abscision, elle a été menée par microscopie à haute résolution en temps réel avec des cellules S2 de l’organisme Drosophila melanogaster par le suivi de protéines recombinantes fluorescentes. L’étude a été divisée en deux axes : gain et perte de fonction par l’intermédiaire respectivement de la protéine Cycline B recombinante stable, non dégradable (CycBstable-GFP) et l’inhibition par l’utilisation d’ARN double brin (ARNdb) sur l’endogène. La CycBstable-GFP a perturbé la cytocinèse en induisant plusieurs anneaux contractiles et midbodies. En revanche la réduction de l’expression de CycB n'a pas eu d’effet observable, et elle ne semble pas avoir d’action sur l’abscission malgré le recrutement de CycB-GFP au midbody tardif. En revanche la protéine Cdk1 semble avoir un rôle dans l'abscision puisque sa réduction d’expression a induit un délai. Elle a donc une implication potentielle sur la cytocinèse. / Dysregulation of the cell cycle can cause cancer. During cytokinesis a contractile ring of actin and myosin forms, contracts and gives rise to a midbody ring which controls abscission. The process of cytokinesis is controlled by proteins such as the Rho GTPase, which activates cytokinesis and cyclin-Cdks that inhibit cytokinesis. Drosophila has 3 mitotic cyclins CycA, CycB and CycB3, which are successively degraded at the end of mitosis to allow the initiation of cytokinesis. The last step of abscission is a phenomenon that is still obscure. The ESCRTIII components VPS4 and CHMP4C protein linked to ANCHR will, in an Aurora B kinasedependent manner, promote abscission with recent studies implicating Cyclin B at this stage. Here, the aim was to test the role of cyclin B in cytokinesis and abscission, using real-time, high resolution microscopy of Drosophila melanogaster S2 cells expressing recombinant fluorescent proteins. This study was divided into two parts: gain and loss of function studies respectively using stable non-degradable cyclin B (CycBstable-GFP) and inhibition by using CycB double-stranded RNA (dsRNA). The CycBstable-GFP perturbed cytokinesis by inducing multiple contractile rings and midbodies. However CycB depletion had no detectable effect on the progression of cytokinesis nor on abscission despite the recruitment of CycB-GFP to the late midbody. In contrast, the protein Cdk1 seemed to play a role in abscission, since its depletion induced a delay. It therefore has potential implications for cytokinesis.
6

Subcelulární lokalizace a úloha komplexu exocyst v savčích buňkách během cytokineze / Subcelulární lokalizace a úloha komplexu exocyst v savčích buňkách během cytokineze

Ulrychová, Lenka January 2011 (has links)
Cytokinesis is the last step of cell cycle when two individual daughter cells separate in process called abscission. This process involves various cellular membrane structures such as endoplasmic reticulum or trans-Golgi network. Moreover, recent investigation has also highlighted an important role of recycling endosomes. The membrane dynamics appear to be important during cell division especially for the formation of new plasma membrane between two daughter cells. Numerous studies suggest that cytokinesis is tightly linked with highly sophisticated transmembrane shuttle that is controlled by Ras-superfamily members such as Rab and Ral proteins. Moreover, during last years has also been revealed the involvement of tethering factors which mediate the fusion of intracellular vesicles with the target plasma membrane. The best known tethering factor is the evolutionary conserved exocyst complex found in all eukaryotic cells. This protein complex is composed of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84) and was found to interact with members of Ras- superfamily suggesting its involvement in the regulation of cytokinesis. Although the exact mechanism remains shrouded in fog this work suppose the possible interactions among Ras- like proteins and exocyst members which may...

Page generated in 0.0311 seconds