• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régulation spatio-temporelle de la cytodiérèse des cellules épithéliales chez l'embryon de Xenopus laevis / Spatio-temporal regulation of epithelial cells cytokinesis in Xenopus laevis embryo

Hatte, Guillaume 31 March 2017 (has links)
Les épithéliums agissent comme des barrières physiques et chimiques vitales pour l’organisme. Les fonctions épithéliales reposent sur la cohésion des cellules assurée par les jonctions serrées et adhérentes qui sont connectées au réseau d’acto-myosine. Pendant le développement et la vie adulte, les épithélia se développent ou se régénèrent grâce à la division cellulaire. Durant la division, les cellules épithéliales opèrent des changements importants de leurs formes sans que l’intégrité de l’épithélium soit altérée. Pendant la division, les forces de tensions appliquées sur la jonction adhérente et la force produite par l’anneau de cytodiérèse s’opposent ce qui contribue au maintien de l’intégrité de l’épithélium. Cependant les mécanismes impliqués dans la régulation des forces mises en jeu pendant la division cellulaire sont mal connus. Mon projet de thèse a été de caractériser la cytodiérèse des cellules épithéliales de vertébrés en utilisant l’embryon de Xenopus laevis comme modèle d’étude in situ. Dans la première partie de ce travail, nous avons montré qu’un espace se forme de façon transitoire entre les deux cellules filles pendant la division. Cet espace est intimement lié à l’anneau de cytodiérèse. Dans la seconde partie, nous avons caractérisé l’implication de la jonction serrée pendant la division cellulaire. Nos résultats montrent que la protéine de structure ZO-1 et la protéine régulatrice GEF-H1 associées à cette jonction, régulent négativement les tensions appliquées sur la jonction adhérente. Le rôle actif de la jonction serrée dans cette régulation est supporté par l’activation de la voie de signalisation Rho/RockII/myosine et la régulation par GEF-H1 du trafic membranaire via le complexe exocyste. Grâce à un biosenseur de tension, nous avons montré que la force appliquée sur la jonction adhérente augmente dans les embryons déplétés de ZO-1 et GEF-H1. Cette augmentation des tensions induit le ralentissement de la division et la déformation de l’anneau contractile. Enfin, nos résultats suggèrent que GEF-H1 contrôlerait localement les tensions au site de division. Dans la dernière partie, nous avons étudié la formation et l’activation de l’anneau d’acto-myosine. Nos résultats non publiés montrent que le recrutement de plusieurs protéines de l’anneau commence en apical et progresse le long de la membrane latérale. Nous nous intéressons à présent à l’étude du rôle des jonctions apicales dans ce recrutement. / Epithelia act as mechanical and chemical barriers essential to the body. Those functions rely on the cohesion of cells by tight and adherens junctions, which are linked to the actomyosin network. During development and adult life, epithelia develop or regenerate through cell division. During division, epithelial cells undergo important cell shape remodeling without altering the epithelium integrity. During cell division, mechanical forces applied to the adherens junctions and forces produced by the contractile ring are opposed, contributing to the maintenance of the epithelium integrity. However, the mechanisms involved in the regulation of the forces involved during cell division are poorly understood. The aim of my thesis project was to characterize cytokinesis in vertebrate epithelial cells using the Xenopus laevis embryo as an in situ model. In the first part of this manuscript, we described in vivo a space transiently forms between the two daughter cells during cell division. This space is intimately linked to the cytokinetic ring. In the second part, we have deciphered the role of tight junctions on cytokinesis. Our results show that the scaffold protein ZO-1 and the regulatory protein GEF-H1, which is associated to tight junctions, negatively regulate global tension applied to adherens junctions. The active role of tight junctions in regulating adherens junction is supported by the finding that GEF-H1 acts by activating the Rho/RockII/myosin pathway and by regulating membrane trafficking via the exocyst complex. The increase tension observed in ZO-1 and GEF-H1 depleted cells is correlated with defect in cytokinesis duration and contractile ring shape during cytokinesis. Finally, our results suggest that GEF-H1 can locally control tensions at division site. In the last part, we have studied contractile ring formation and activation. Our results show that recruitment of contractile ring proteins begins apically and progresses along the lateral membrane. We are now studying the role of apical junctions in this recruitment.
2

Squelette membranaire chez Paramecium Tetraurelia : analyse structurale et fonctionnelle de la famille multigénique des épiplasmines

Damaj, Raghida 30 October 2008 (has links) (PDF)
Le cortex de la plupart des protistes ciliés contient un squelette membranaire dont le principal élément est l'épiplasme, une structure apposée à la membrane alvéolaire interne. Chez la paramécie, l'épiplasme se présente sous forme d'écailles indépendantes disposées autour de chaque appareil ciliaire ; il est composé d'une famille multigénique de protéines appelées épiplasmines. Nous avons réalisé une étude structurale de cette famille multigénique. L'analyse phylogénétique a permis de confirmer l'existence de 5 groupes d'épiplasmines divisé chacun en deux sous-groupes a et b. L'utilisation de la méthodologie HCA nous a permis de montrer que ces protéines sont modulaires et présentent un arrangement de leurs domaines structuraux. Elles peuvent ainsi être regroupées en trois classes symétriques, asymétriques et atypiques. L'analyse des régions 5'UTR des membres de cette famille multigénique montre la présence d'éléments putatifs de régulation d'expression. La comparaison des épiplasmines de la paramécie avec leurs orthologues de Tetrahymena montre une relation structurale entre les groupes 1,2,3 et 5 et les EpiT 1,2,3, et 5 respectivement suggérant l'existence d'un ancêtre commun pour l'épiplasme de Paramecium et Tetrahymena. Nous avons réalisé l'analyse fonctionnelle des épiplasmines à partir d'approche par ARN interférence et par localisation couplée à la GFP. La perturbation de l'expression des épiplasmines symétriques et asymétriques, aboutit à une réponse cellulaire commune qui se traduit par un changement de la forme cellulaire, un blocage de la cytocinèse et enfin l'apparition de formes plasmodiales. L'analyse du cortex par microscopie à fluorescence montre une altération des unités corticales qui est fonction des types structuraux des épiplasmines. Les épiplasmines se localisent de manière différentielle autour du corps basal définissant un territoire dont le modèle d'organisation est centrifuge. On définit alors des épiplasmines cinétomosales, péricinétomosales, core et enfin périphériques. Ce modèle est discuté en relation avec les phénotypes obtenus par l'analyse fonctionnelle. Il permet d'intégrer les différents niveaux de relation entre le corps basal, son territoire et l'ensemble de l'épiplasme.
3

Caractérisation du rôle de Citron Kinase durant la cytokinèse

El-Amine, Nour 12 1900 (has links)
La cytokinèse est un processus dont le but est une séparation de deux cellules soeurs en deux entités suite à une mitose. La cytokinèse nécessite la formation d’un anneau contractile (AC) qui va conduire un sillon de clivage vers une ingression à l’équateur de la cellule. L’une des étapes critiques de ce processus est la transition d’un AC dynamique vers une structure stable surnommée l’anneau du midbody (AM), organelle qui va guider la cellule vers l’abscision. La compréhension des mécanismes moléculaires impliqués dans cette transition nous permettrait de mieux comprendre les complexes protéiques impliqués autant au niveau de l’initiation qu’à la terminaison de la cytokinèse. Des défauts ayant lieu lors de cette transition mènent à la formation de cellules binucléées tétraploïdes qui sont observées dans plusieurs pathologies comme le cancer. Afin d’approfondir nos connaissances à ce sujet j’ai utilisé un modèle d’imagerie optique en temps réel dans un modèle cellulaire de Drosophila melanogaster : les cellules S2 de Schneider. Ces études ont mis l’emphase sur un nouveau mécanisme de maturation de la transition AC/AM. Nous avons pu démontrer que la kinase Citron, Sticky, et la septine, Peanut, agissent de manière opposée sur la protéine Anillin pour retenir ou éliminer, respectivement, la membrane plasmique lors de la transition AC/AM. En effet, la diminution d’expression de Sticky par ARNi engendre une perte de contrôle de rétention membranaire de l’AM. À l’inverse, la diminution d’expression de Peanut inhibe la maturation par excrétion membranaire de l’AM. La diminution d’expression simultanée de Sticky et de Peanut conduit l’AC vers des mouvements oscillatoires typiques d’une instabilité de l’AC suite à la perte de fonction de l’Anillin. Sticky est une protéine corticale lors de la cytokinèse dont le rôle et les partenaires d’interaction restent controversés. Pour approfondie nos connaissance de ce sujet, nous avons effectué une étude structurelle et fonctionnelle de Sticky. Cette étude démontre que Sticky possède deux mécanismes de localisation corticale. Le premier dépend de l’Anillin et le deuxième dépend de la petite GTPase Rho1, le régulateur maître de la cytokinèse. Sticky est capable de se localiser à l’AC en présence de l’un ou l’autre de ces deux mécanismes, mais chacun semble être essentiel pour la réussite de la cytokinèse. Le domaine minimal d’interaction entre la Sticky et l’Anillin a été identifié. Une version d’Anillin qui manque le site de liaison à la Sticky est incapable de supporter l’achèvement de la cytokinèse, et les cellules échouent la cytokinèse d’une manière semblable aux cellules dont l’expression de Sticky est diminuée. Similairement, les cellules exprimant une protéine Sticky mutée au site d’interaction avec Rho1-GTP, sont incapables de compléter la cytokinèse lorsque les niveaux endogènes de Sticky sont diminués par ARNi. Ceci suggère que Sticky agit avec Anillin et Rho1 au niveau du cortex pour guider la transition d’un AC dynamique vers un AM stable. Par la mise en évidence et la caractérisation d’un nouveau mécanisme moléculaire essentiel à la cytokinèse, cette thèse constitue des avancements importants au niveau de la cytokinèse. / Cytokinesis is a multistep process that allows two sister cells to undergo complete separation following mitosis. Cytokinesis requires the formation of a contractile ring (CR) that will drive cleavage furrow ingression at the equator of the cell. One of the crucial steps in this process is the transition from a dynamic CR to a more stable structure named the midbody ring (MR), which directs the final separation or abscission. Our knowledge of the molecular mechanisms involved in the CR-to-MR transition would presumably improve our understanding of the molecular complexes involved throughout cytokinesis from initiation to abscission. Defects that occur during this transition can lead to the formation of bi-nucleate tetraploid cells that are often observed in pathological conditions such as cancer. I have used Drosophila melanogaster Schneider’s S2 cells to study the CR-to-MR transition. My findings have highlighted a previously uncharacterized maturation process essential for the transition. More specifically, I demonstrate that the Citron Kinase, Sticky, and the Septin, Peanut, have opposing actions on the scaffold protein Anillin to either retain or extrude, respectively, membrane-positive proteins during the CR-to-MR transition. Indeed, Sticky depletion by RNAi led to uncontrolled loss of membrane-associated Anillin at the MR. Conversely, Peanut depletion led to inhibition of MR maturation by membrane extrusion. Co-depletion of Sticky and Peanut led to oscillatory movements of the CR, typical of Anillin depletion. Sticky is a cortical protein during cytokinesis whose role and interacting partners are controversial. I have performed a structure/function analysis of Sticky to better define its role and regulation during cytokinesis. My work shows that Sticky has two mechanisms of cortical localization. The first is through an Anillin interaction and the second is through the small GTPase Rho1, a master regulator of cytokinesis. Sticky can localize to the cortex in the absence of either one of these mechanisms. However, loss of both inhibits its localization. Following the identification of the minimal interaction sites of Anillin and Sticky, I expressed an Anillin mutant that lacked part of this site and found that cells failed cytokinesis in a similar manner to cells depleted of Sticky. Mutation of the Rho1 binding site on Sticky produced similar cytokinesis failures. Altogether, the results suggest that Sticky interacts with Anillin and Rho1 at the cortex to guide the transition from dynamic CR to stable MR. This thesis advances our understanding of cytokinesis by highlighting a previously uncharacterized process of MR maturation and by defining the importance and regulation of Citron Kinase during this process.
4

Cytodiérèse des cellules épithetiales et maintien de l'intégrité du tissu chez Drosophila melanogaster / Epithelial cells cytokinesis and maintenance of tissue integrity in Drosophila melanogaster

Daniel, Emeline 15 December 2017 (has links)
Les cellules épithéliales forment un tissu de cellules étroitement juxtaposées qui assure une barrière physique et chimique entre les compartiments internes et externes du corps. L’intégrité de ces tissus est donc essentielle. Au cours du développement et de la vie adulte, le tissu doit grandir ou se régénérer, ce qui implique de nombreuses divisions cellulaires. La dernière étape de la division, la cytodiérèse, met en jeu la formation d’un anneau contractile qui, en se fermant, va séparer les cellules sœurs. Une fois complètement fermé, il donne naissance au midbody, juste sous le niveau des jonctions adhérentes, au sein des jonctions septées, chez la drosophile. L’ultime étape, l’abscission, permet la séparation physique définitive et l’isolation cytoplasmique des cellules sœurs. Si de nombreuses études ont décrit ces processus dans les cellules isolées, peu de choses sont connues quant à la cytodiérèse des cellules épithéliales. Ce travail de thèse a permis de mettre en évidence que malgré le recrutement de tous les effecteurs et régulateurs de l’abscission, celle-ci est retardée dans les cellules épithéliales. Des expériences de photo-conversion de KAEDE ont montré que l’abscission est liée à l’entrée en mitose des cellules épithéliales. La question de l’intégrité du tissu et notamment de la barrière de perméabilité a ensuite été investigué. Nous avons montré que les cellules voisines formaient des protrusions de membrane restant connectées au midbody tout au long de sa lente migration vers le pôle basal des cellules. Les expériences de FRAP menées sur les jonctions bicellulaires et tri-cellulaires des jonctions septées ont permis de montrer que celles-ci se formaient juste sous les jonctions adhérentes et toujours au-dessus du midbody, participant ainsi à la migration de ce dernier vers le pôle basal. Les contacts maintenus avec les voisines ainsi que l’assemblage polarisé des jonctions septées participent au maintien de l’intégrité du tissu au cours des divisions de cellules épithéliales. / Epithelial cells are closely juxtaposed to form a tissue playing a physical and chemical barrier between external and internal body compartments. Thus, tissue integrity is essential. During development and adult life, epithelia has to growth and regenerate meaning a lot of divisions. At the end of cell division, cytokinesis occurs, implying the formation of a contractile ring which contracts to separate daughter cells. In Drosophila, once totally closed, the contractile ring gives rise to the midbody, just below adherens junctions, in the septate junctions layer. Last step of cytokinesis, abscission, permits the final cut and the cytoplasmic isolation of daughter cells. If cytokinesis is well described in isolated cells, little is known about epithelial cells cytokinesis. This work shows that whereas all abscission regulators and effectors are recruited, abscission is delayed in epithelial cells. KAEDE photo-conversion assays show that abscission is linked to epithelial cells mitosis entry. Then we investigate how permeability barrier is maintained during cell division. We show that neighboring cells present finger-like protrusions contacting the midbody all along the midbody is moving basally across septate junctions. FRAP experiments on bicellular and tricellular septate junctions show that they form just below adherens junctions and always above the midbody, leading to its basal migration. Contacts maintained with neighbors and polarized assembly of septate junctions participate to the maintenance of tissue integrity throughout epithelial cells divisions.

Page generated in 0.0389 seconds