• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 30
  • 16
  • 15
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudo da influência de organo-silanos na resistência à corrosão de aço-carbono por meio de técnicas eletroquímicas. / The study of organosilanes influence on mild steel and the corrosion resistance evaluation by electrochemical techniques.

Oliveira, Marcos Fernandes de 04 August 2006 (has links)
Na presente tese foi investigado o desempenho de camadas de organo-silanos sobre chapas de aço-carbono, similares às utilizadas na fabricação de veículos da indústria automobilística. As técnicas utilizadas neste estudo compreenderam a Espectroscopia de Impedância Eletroquímica (EIE) e a Resistência de Polarização Linear, por meio das quais foram determinadas respectivamente, as propriedades resistivas dos filmes e a redução das velocidades de corrosão do substrato. O estudo compreendeu a avaliação de diversos organo-silanos funcionais e não-funcionais, submetidos a diferentes condições experimentais. Os ensaios preliminares tiveram por finalidade selecionar aqueles com melhor desempenho como sistemas de proteção em monocamadas. A partir desta seleção e,, informações da literatura, novos ensaios foram conduzidos por meio de um Projeto Fatorial de Experimentos, combinando os silanos funcionais com melhor desempenho com outro silano não-funcional, designado como 1,2-bis(trietoxilsilil)etano (BTSE). Esta combinação teve por finalidade produzir camadas duplas de silanos para proteger o aço-carbono. As variáveis independentes estudadas foram a combinação entre as camadas de BTSE e do silano funcional, além das condições de hidrólise, temperatura e tempo de cura destes filmes. As variáveis dependentes ou resposta utilizadas foram: a impedância real a 0,03 Hz, obtida no ensaio de EIE, e a densidade de corrente de corrosão, originada das medidas de Resistência de Polarização Linear. Dentre as várias alternativas testadas, os melhores resultados foram apresentados pela combinação de camadas de BTSE com bis-(g-trimetoxisililpropil)amina (BTSPA) e BTSE com VS (viniltrietoxisilano) onde a primeira combinação determinou uma redução da ordem de 95% na velocidade de corrosão em relação a uma chapa sem tratamento e uma perda de espessura da ordem de 70% menor que um corpo-deprova revestido apenas com uma camada convencional de fosfatização. O BTSPA já na seleção inicial havia demonstrado excelentes resultados de proteção apenas como película monocamada, tendo seu desempenho melhorado consideravelmente em conjunto como o BTSE. Na segunda combinação, a velocidade de corrosão foi 90% menor do que num corpo-de-prova desprotegido e até 40% menor do que num corpo-de-prova revestido com uma camada de fosfato. / The aim of this thesis was the investigation performance of organo-silane layers on mild steel, similar to that used in car bodies in automotive assembly plants. The electrochemical impedance spectroscopy (EIS) and the polarization resistance (Rp) were used as tools to evaluate the resistive layers properties and the substrate corrosion rate, respectively. Several non-functional and functional silanes were evaluated under different experimental conditions. Preliminary testing was conducted in order to select the silane with best performance as monolayer protection. Based on this preliminary performance results and supplementary information from papers, new tests were conducted using a design of experiments (DOE), combining the best functional monolayers silanes with the non-functional silane 1,2- bis(triethoxylsilyl)ethane (BTSE). This combination had the intention to produce double-layers silane films to protect the mild steel. The independent variables tested in DOE were: combination between the BTSE and the functional silane layers, hydrolysis parameters, temperature and the time film curing. The real impedance values at 0,03 Hz, obtained in the EIE tests, and the polarization resistance were taken as response (dependent) variables to evaluate the design. Among the different alternatives, the best results were presented by combining the BTSE layer with the BTSPA (bis-(g trimetoxysilylpropyl)amine layer and BTSE layer with VS (vinyl triethoxy silane) layer. The first silanes combination had shown a 95% decrease in corrosion rate when compared to a non-treated sheet and a thickness loss 70% lower than on a specimen coated with ordinary phosphate layer. Already in the initial selection the BTSPA did show excellent protection results just as monolayer film, and its performance increased significantly when applied together with BTSE. The second silanes combination, had presented a 90% decrease in corrosion rate when compared to a non-treated sheet and a thickness loss 40% lower than a specimen coated with ordinary phosphate layer.
22

Inhibition of mild steel corrosion in cooling systems by low- and non-toxic corrosion inhibitors

Ahmed, Mohamed January 2017 (has links)
The aim of the research in this thesis was to study how environmentally friendly corrosion inhibitors for cooling water systems might be developed and used. Firstly, reduced toxicity inorganic corrosion inhibitors (i.e. nitrite/molybdate) were considered. Secondly, non-toxic inhibitors based on mono and di-basic salts of carboxylic acids were studied systematically as a function of carbon chain length. For nitrite inhibitor alone, a concentration of 7 mM NaNO2 was effective to inhibit carbon steel in chloride media of 10 mM NaCl, while 10 mM nitrite was needed in sulphate media of 3.66 mM Na2SO4. However, it was found possible to significantly reduce the concentration of nitrite by adding molybdate in synergy. This was attributed to the nitrite passivation combined with ferrous molybdate salt film pore plugging thus promoting a continuous and protective film on the material within these media. Thus, in pH 6-10 an inhibition efficiency of 97% was recorded with a mixture of 3 mM nitrite/2 mM molybdate in both chloride and sulphate media and at 25°C and 60°C. However as the solution pH decreased below pH 4 the inhibition efficiency decreased to about 47%.In the second part of the study, the use of sodium salts of carboxylic acids with different chain lengths has been investigated. In this part a summary of the performances and limitations of both mono- and di-sodium carboxylate inhibitors are presented. For mono-carboxylates, the inhibition efficiency reached a maximum value of 95% in stagnant aerated solutions at a chain length of C=4 with a critical inhibition concentration of 6 mM in 10 mM NaCl solution. However the inhibition efficiency gradually decreased as the number of carbon atoms in the chain length increased to more than 8, or less than 4, and this was in agreement with surface hydrophobicity and contact angle results. For lower chain lengths, the carboxylate anion becomes more acidic and complexing of the metal ion while for longer chain lengths, the carboxylate anion becomes less soluble and tends to micellise wherby the active groups are no longer available for surface adsorption. For di-carboxylates the inhibition efficiency improved in 10 mM NaCl at a given chain length compared with mono-carboxylates, and continued to increase to C=8 (sebacate), which achieved excellent inhibition efficiency. However, sebacate is costly so a blend with ethyl hexanoate was found to be economically favoured.
23

Evaluation of inorganic corrosion inhibition of mild steel and Aluminium alloy in acidic environment.

Sanni, Omotayo. January 2013 (has links)
M. Tech. Chemical Engineering. / Discusses the effect of ferrous gluconate (FG) and zinc gluconate (ZG) as novel corrosion inhibitors on the corrosion rate of mild steel and aluminium alloy in 3.5% NaCl and 0.5 M H2SO4 media was investigated by electrochemical and weight loss techniques. The effect of inhibitor concentration was investigated. The concentration of these inhibitor ranges from 0.5 to 2.0% g/v at a temperature of 28OC. The synergetic effect of these inhibitors was also studied. High resolution scanning electron microscopy equipped with energy dispersive spectroscopy (HR-SEM/EDS) and Raman spectroscopy was used to characterize the surface morphology of the metals before and after corrosion. Experimental results revealed that ferrous gluconate and zinc gluconate in 3.5% NaCl and 0.5 M H2SO4 solution decreased the corrosion rate at the different concentrations studied. Maximum inhibition efficiency of 100% was achieved for mild steel at 0.5% g/v concentration of FG, 0.5% g/v concentration of ZG and 1.5% g/v synergetic of FG + ZG in 3.5% NaCl solution. Similarly, 100% inhibition efficiency was obtained for aluminium alloy at different media studied (3.5% NaCl and 0.5 M H2SO4). The experimental results obtained from potentiodynamic polarization method showed that the presence of FG and ZG in 3.5% NaCl and 0.5 M H2SO4 solutions decreases the corrosion current densities (icorr) and corrosion rates (CR), and increases the polarization resistance (Rp). It was observed that the inhibitor efficiency depends on the corrosive media, concentration of the inhibitor and the substrate material. The adsorption characteristics of FG and ZG were best described by the Langmuir and Freundlich isotherms. Good correlation exists between the results obtained from both polarization and weight loss methods.
24

Corrosion study and surface characterization of Zinc (ZN) and Zinc-Aluminium (ZN-AL) depositions on mild steel in saline environment.

Fayomi, Ojo Sunday. January 2012 (has links)
M. Tech. Engineering Metallurgy. / Aims to improve the mechanical and chemical properties of mild steel, by developing highly corrosion resistant surface coatings of zinc-aluminum using the electro-deposition techniques. Properties that are targeted are specifically hardness, wear and corrosion resistances.
25

Estudo da influência de organo-silanos na resistência à corrosão de aço-carbono por meio de técnicas eletroquímicas. / The study of organosilanes influence on mild steel and the corrosion resistance evaluation by electrochemical techniques.

Marcos Fernandes de Oliveira 04 August 2006 (has links)
Na presente tese foi investigado o desempenho de camadas de organo-silanos sobre chapas de aço-carbono, similares às utilizadas na fabricação de veículos da indústria automobilística. As técnicas utilizadas neste estudo compreenderam a Espectroscopia de Impedância Eletroquímica (EIE) e a Resistência de Polarização Linear, por meio das quais foram determinadas respectivamente, as propriedades resistivas dos filmes e a redução das velocidades de corrosão do substrato. O estudo compreendeu a avaliação de diversos organo-silanos funcionais e não-funcionais, submetidos a diferentes condições experimentais. Os ensaios preliminares tiveram por finalidade selecionar aqueles com melhor desempenho como sistemas de proteção em monocamadas. A partir desta seleção e,, informações da literatura, novos ensaios foram conduzidos por meio de um Projeto Fatorial de Experimentos, combinando os silanos funcionais com melhor desempenho com outro silano não-funcional, designado como 1,2-bis(trietoxilsilil)etano (BTSE). Esta combinação teve por finalidade produzir camadas duplas de silanos para proteger o aço-carbono. As variáveis independentes estudadas foram a combinação entre as camadas de BTSE e do silano funcional, além das condições de hidrólise, temperatura e tempo de cura destes filmes. As variáveis dependentes ou resposta utilizadas foram: a impedância real a 0,03 Hz, obtida no ensaio de EIE, e a densidade de corrente de corrosão, originada das medidas de Resistência de Polarização Linear. Dentre as várias alternativas testadas, os melhores resultados foram apresentados pela combinação de camadas de BTSE com bis-(g-trimetoxisililpropil)amina (BTSPA) e BTSE com VS (viniltrietoxisilano) onde a primeira combinação determinou uma redução da ordem de 95% na velocidade de corrosão em relação a uma chapa sem tratamento e uma perda de espessura da ordem de 70% menor que um corpo-deprova revestido apenas com uma camada convencional de fosfatização. O BTSPA já na seleção inicial havia demonstrado excelentes resultados de proteção apenas como película monocamada, tendo seu desempenho melhorado consideravelmente em conjunto como o BTSE. Na segunda combinação, a velocidade de corrosão foi 90% menor do que num corpo-de-prova desprotegido e até 40% menor do que num corpo-de-prova revestido com uma camada de fosfato. / The aim of this thesis was the investigation performance of organo-silane layers on mild steel, similar to that used in car bodies in automotive assembly plants. The electrochemical impedance spectroscopy (EIS) and the polarization resistance (Rp) were used as tools to evaluate the resistive layers properties and the substrate corrosion rate, respectively. Several non-functional and functional silanes were evaluated under different experimental conditions. Preliminary testing was conducted in order to select the silane with best performance as monolayer protection. Based on this preliminary performance results and supplementary information from papers, new tests were conducted using a design of experiments (DOE), combining the best functional monolayers silanes with the non-functional silane 1,2- bis(triethoxylsilyl)ethane (BTSE). This combination had the intention to produce double-layers silane films to protect the mild steel. The independent variables tested in DOE were: combination between the BTSE and the functional silane layers, hydrolysis parameters, temperature and the time film curing. The real impedance values at 0,03 Hz, obtained in the EIE tests, and the polarization resistance were taken as response (dependent) variables to evaluate the design. Among the different alternatives, the best results were presented by combining the BTSE layer with the BTSPA (bis-(g trimetoxysilylpropyl)amine layer and BTSE layer with VS (vinyl triethoxy silane) layer. The first silanes combination had shown a 95% decrease in corrosion rate when compared to a non-treated sheet and a thickness loss 70% lower than on a specimen coated with ordinary phosphate layer. Already in the initial selection the BTSPA did show excellent protection results just as monolayer film, and its performance increased significantly when applied together with BTSE. The second silanes combination, had presented a 90% decrease in corrosion rate when compared to a non-treated sheet and a thickness loss 40% lower than a specimen coated with ordinary phosphate layer.
26

Laser net shape welding of steels

Eghlio, Ramadan Mahmoud January 2012 (has links)
Laser technologies have made distinguished contributions to modern industry. These have typically been realised through the important role played by lasers in the advancement of manufacturing technology in many areas such as welding, which has become an important joining technique and thus promoted the use of lasers in a wide variety of applications in the oil, gas, aerospace, aircraft, automotive, electronics and medical industries. A detailed review of previous work in the use of lasers for advanced manufacturing, and in particular, laser beam welding is given. The work reported in this thesis aims to develop a new method of laser welding. This is connected with investigations relating to the production of net shape welds for bead-on-plate welding and butt welding of mild steel plates. Based on the nature of its operation, use of a fibre laser was considered most suitable compared to other solid state lasers. Net-shape welds were demonstrated on mild steel plates using an IPG 1 kW single mode fibre laser with a maximum power output of 1000 W.The thesis shows results from experimental and modelling (based on finite element and computational fluid dynamic modelling) to validate the idea and the understanding of underlying scientific principles. The thesis is presented in the form of a collection of published work generated by the author during the course of this project. In addition, some results that are not yet published are also included. Design of experiments and statistical modelling has been used in the experimental work to understand the process parameter interactions. Microstructural and mechanical testing have been carried out to evaluate the performance of the welds. Net shaped (the weld bead is flat to the parent material surface) welds have been achieved and compared with standard welds. The understanding of net-shape weld formation and the effect of the laser welding parameters was enhanced by the theoretical modelling. The thesis concludes with a summary of scientific findings and an overview of future work.
27

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Dutta, Madhuri 08 1900 (has links)
A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
28

Effect of Iron Carbonate Deposition on Mild Steel Corrosion in High Partial Pressure Carbon Dioxide Systems

Suhor, Muhammad Firdaus 01 October 2018 (has links)
No description available.
29

Thermodynamics and Kinetics of Carbon Dioxide Corrosion of Mild Steel at Elevated Temperatures

Tanupabrungsun, Tanaporn January 2012 (has links)
No description available.
30

The Dynamic Yielding of Mild Steel

Harpalani, Kalyan 05 1900 (has links)
<p> Dynamic stress tests were performed on mild steel samples. The material parameters 'n' and 'G(εᵣ, tₒ)', defined as 'stress dislocation velocity exponent' and 'flow function' respectively, were evaluated using the equation "σₘⁿtₒ K(n) = G(εᵣ, tₒ)" as proposed by Kardos (1). The values determined for 'n' are in agreement with the results obtained by other researchers using different techniques. </p> <p> The equipment for studying the response of materials to dynamic loading was modified to permit a wider duration range for the loading. </p> <p> A technique was developed to monitor the pressure of the oil in the intensifier throughout the entire loading cycle. </p> / Thesis / Master of Engineering (ME)

Page generated in 0.0511 seconds