• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 46
  • 34
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Scaling up virtual MIMO systems

Gonzalez Perez, Miryam Guadalupe January 2018 (has links)
Multiple-input multiple-output (MIMO) systems are a mature technology that has been incorporated into current wireless broadband standards to improve the channel capacity and link reliability. Nevertheless, due to the continuous increasing demand for wireless data traffic new strategies are to be adopted. Very large MIMO antenna arrays represents a paradigm shift in terms of theory and implementation, where the use of tens or hundreds of antennas provides significant improvements in throughput and radiated energy efficiency compared to single antennas setups. Since design constraints limit the number of usable antennas, virtual systems can be seen as a promising technique due to their ability to mimic and exploit the gains of multi-antenna systems by means of wireless cooperation. Considering these arguments, in this work, energy efficient coding and network design for large virtual MIMO systems are presented. Firstly, a cooperative virtual MIMO (V-MIMO) system that uses a large multi-antenna transmitter and implements compress-and-forward (CF) relay cooperation is investigated. Since constructing a reliable codebook is the most computationally complex task performed by the relay nodes in CF cooperation, reduced complexity quantisation techniques are introduced. The analysis is focused on the block error probability (BLER) and the computational complexity for the uniform scalar quantiser (U-SQ) and the Lloyd-Max algorithm (LM-SQ). Numerical results show that the LM-SQ is simpler to design and can achieve a BLER performance comparable to the optimal vector quantiser. Furthermore, due to its low complexity, U-SQ could be consider particularly suitable for very large wireless systems. Even though very large MIMO systems enhance the spectral efficiency of wireless networks, this comes at the expense of linearly increasing the power consumption due to the use of multiple radio frequency chains to support the antennas. Thus, the energy efficiency and throughput of the cooperative V-MIMO system are analysed and the impact of the imperfect channel state information (CSI) on the system's performance is studied. Finally, a power allocation algorithm is implemented to reduce the total power consumption. Simulation results show that wireless cooperation between users is more energy efficient than using a high modulation order transmission and that the larger the number of transmit antennas the lower the impact of the imperfect CSI on the system's performance. Finally, the application of cooperative systems is extended to wireless self-backhauling heterogeneous networks, where the decode-and-forward (DF) protocol is employed to provide a cost-effective and reliable backhaul. The associated trade-offs for a heterogeneous network with inhomogeneous user distributions are investigated through the use of sleeping strategies. Three different policies for switching-off base stations are considered: random, load-based and greedy algorithms. The probability of coverage for the random and load-based sleeping policies is derived. Moreover, an energy efficient base station deployment and operation approach is presented. Numerical results show that the average number of base stations required to support the traffic load at peak-time can be reduced by using the greedy algorithm for base station deployment and that highly clustered networks exhibit a smaller average serving distance and thus, a better probability of coverage.
12

Reconfigurable and Wideband Receiver Components for System-on-Chip Millimetre-Wave Radiometer Front-Ends

Reyaz, Shakila Bint January 2015 (has links)
This thesis presents solutions and studies related to the design of reconfigurable and wideband receiver circuits for system-on-chip (SoC) radiometer front-ends within the millimetre-wave (mm-wave) range. Whereas many of today’s mm-wave front-ends are bulky and costly due to having discrete RF components, single-chip receiver modules could potentially result in a wider use for emerging applications such as wireless communication, short range radar and passive imaging security sensors if realised with adequate performances and at a lower cost. Three main topics are considered in this thesis, monolithic integration of low-loss RF-MEMS (Dicke) switch networks and switched LNAs in MMIC/RFIC foundry processes, designs of SiGe wideband (IF) amplifier and broadband power detectors up to W-band (75-110 GHz). Low-loss and high isolation GaAs and SiGe RF-MEMS switch networks were designed and characterised for the 30-110 GHz range. A GaAs MEMS Dicke switch network has a measured minimum loss of 1 dB and maximum isolation of 19 dB at 70-96 GHz, respectively, making it a potential candidate in Dicke switched radiometer receivers. Furthermore, single-chip 30 GHz and W-band MEMS Dicke switched LNA designs have been realised for the first time in SiGe BiCMOS and GaAs mHEMT processes, respectively. For a targeted 94 GHz passive imaging application two different receiver topologies have been investigated based on direct-detection and direct-conversion (heterodyne) architectures. An optimised detector design fabricated in a 0.13 μm SiGe process achieves a more wideband input matching than earlier silicon W-band detectors and is competitive with reported III-V W-band detectors in terms of a higher responsivity and similar NEP. A SiGe 2-37 GHz high-gain differential (IF) amplifier design achieves a more wideband matching and an order of magnitude higher linearity than a recent single-ended SiGe LNA. The SiGe IF amplifier was integrated on-chip with a power detector in a 5-35 GHz IF section. Their broadband properties compared with other IF amplifier/detector RFICs, make them suitable for W-band down-conversion receivers with a larger pre-detection bandwidth and improved sensitivity. The experimental results successfully demonstrate the feasibility of the SiGe 5-35 GHz IF section for high performance SoC W-band radiometers using a more wideband heterodyne receiver architecture.
13

Development and testing of quasi-optical devices for Photon Orbital Angular Momentum manipulation at millimetre wavelengths

Maccalli, Stefania January 2014 (has links)
It is well known that light can carry two different kind of angular momentum that together form the total angular momentum of photons. These two forms are the spin orbital angular momentum, associated with the circular polarisation of light, and the orbital angular momentum of light associated with a wavefront tilted with respect to the propagation axis. Any tilted wavefront generates an orbital component of the angular momentum but there are some special cases in which this property becomes particularly interesting. It is the case of optical vortices which form when the waveform is continuously and uniformly tilted to the propagation axis forming a spiral structure.
14

Coexistence of Terrestrial and Satellite Networks in the 28 GHz band

Ur Rahman, Aniq 06 1900 (has links)
As we move towards the sixth generation (6G) of connectivity, satellites have been identified as an indispensable solution to bridge the digital divide. The satellites offer an extensive coverage footprint and can reach the most remote regions with high throughput, fueled by the large bandwidth available in higher frequency bands. As the low earth orbit (LEO) satellites are closer to the earth and therefore have lower latency, we could use a mega-constellation of LEO satellites to complement the terrestrial networks in 6G. However, the satellite and terrestrial networks may compete for the same spectrum band, thereby being a source of interference for each other. The mmWave bands have attracted the attention of LEO satellite networks and terrestrial mobile operators alike. Specifically, the 28-GHz mmWave band (27.5-29.5 GHz) is licensed to Fixed Satellite Services (FSS) for earth-to-satellite uplink transmissions, while the terrestrial networks will use it for downlink operation. The satellite networks are the primary users of the 28 GHz band, while it is also available for licensing to International Mobile Telecommunication (IMT) networks. In some countries, the 28 GHz band is also used for point-to-multipoint (PMP) wireless backhaul links. Therefore, in this work, we aim to understand the impact of the earth station uplink transmissions on the terrestrial users, viz., the cellular users, and the backhaul points, and suggest methods to facilitate the coexistence of these networks in the 28 GHz band through exclusion zones. The average data rate of the networks is derived through stochastic geometry, which results in expressions that are not closed-form. To optimize the data rates of the coexisting networks jointly, we first approximate the coverage probability expressions as closed-form sigmoid curves. This enables us to use gradient descent methods to determine the optimal radii of the exclusion zones.
15

Glucose level detection using millimetre-wave metamaterial-inspired resonator

Qureshi, S.A., Abidin, Z.Z., Elamin, N.I.M., Majid, H.A., Ashyap, A.Y.I., Nebhen, J., Kamarudin, M.R., See, C.H., Abd-Alhameed, Raed 22 July 2022 (has links)
Yes / Millimetre-wave frequencies are promising for sensitive detection of glucose levels in the blood, where the temperature effect is insignificant. All these features provide the feasibility of continuous, portable, and accurate monitoring of glucose levels. This paper presents a metamaterial-inspired resonator comprising five split-rings to detect glucose levels at 24.9 GHz. The plexiglass case containing blood is modelled on the sensor's surface and the structure is simulated for the glucose levels in blood from 50 mg/dl to 120 mg/dl. The novelty of the sensor is demonstrated by the capability to sense the normal glucose levels at millimetre-wave frequencies. The dielectric characteristics of the blood are modelled by using the Debye parameters. The proposed design can detect small changes in the dielectric properties of blood caused by varying glucose levels. The variation in the transmission coefficient for each glucose level tested in this study is determined by the quality factor and resonant frequency. The sensor presented can detect the change in the quality factor of transmission response up to 2.71/mg/dl. The sensor's performance has also been tested to detect diabetic hyperosmolar syndrome. The sensor showed a linear shift in resonant frequency with the change in glucose levels, and an R2 of 0.9976 was obtained by applying regression analysis. Thus, the sensor can be used to monitor glucose in a normal range as well as at extreme levels. / This study is funded by Ministry of Higher Education (MoHE) Malaysia under Fundamental Research Grant Scheme Vot No. FRGS/1/2019/TK04/UTHM/02/13, and it is partially sponsored by Universiti Tun Hussein Onn Malaysia (UTHM).
16

Improvements to the modelling of radiowave propagation at millimetre wavelengths : in-depth studies are reported on resonance phenomena in the scattering of spherical ice particles, extinction and backscattering properties of clouds and on the absorption and dispersion spectra of atmospheric gases

Papatsoris, Anastassios Dimitriou January 1993 (has links)
Various physical mechanisms that affect radiowave propagation at millimetre wavelengths are considered. Current modelling weaknesses are highlighted and new improved models or more appropriate modelling approaches are suggested. Interference and resonance phenomena in the scattering of spherical ice and water particles are reviewed. The long standing problem of the numerous resonances observed in the scattering diagrams of dielectric spheres is answered. The spatial structure and the physical characteristics of non-precipitable ice and water clouds are reviewed. Extinction and back scattering calculations for a wide variety of cloud models over the entire millimetre frequency spectrum are given. Multiple scattering and the effects of super-large drops in clouds are also dealt with. The potential of a spaceborne instrument in deducing information about the vertical structure of various cloud types is examined. Attenuation and reflectivity profiles resulting from various cloud types are calculated for a nadir pointing fixed beam millimetre wave radar operating at 94 GHz. The physics and application of the equation of radiative transfer to millimetre wave propagation in the earth's atmosphere are given and also is the solution of this equation for a typical millimetre wave remote sensing application. The theory of gaseous absorption at millimetre wavelengths is presented and an improved modelling approach is proposed for the calculation of the absorption and dispersion spectra of atmospheric gases. The effects of trace gases on communication systems operating at high altitudes are for the first time reported. Finally the use of the 60 GHz oxygen absorption band for top-side air traffic control/navigation and broadband transmission purposes is studied.
17

Development of coherent detector technologies for sub-millimetre wave astronomy observations

Tan, Boon Kok January 2012 (has links)
Superconductor-Insulator-Superconductor (SIS) mixers are now used regularly in sub- millimetre astronomical receivers. They have already achieved sensitivity approaching the quantum limit at frequencies below the superconducting gap of niobium (~680 GHz). Above that, the mixer performance is compromised by losses, unless materials with higher superconducting gap are employed in conjunction with the niobium tunnel junction. In this thesis, we present the development of 700 GHz niobium SIS mixers, employing a unilateral finline taper on a thin Silicon-On-Insulator (SOI) substrate. These mixers are broadband with full on-chip planar circuit integration, and require only a very simple mixer block. They were designed using rigorous 3-D electromagnetic simulator (HFSS), in conjunction with a quantum mixing software package (SuperMix), and have demonstrated good performance with the best noise temperature measured at 143 K. Our mixer devices were fed by multiple flare angle smooth-walled horns, which are easy to fabricated, yet retain the high performance of corrugated horns. The radiation patterns measured from 600–740 GHz have shown good beam circularity, low sidelobe and cross-polarization levels. In this thesis, we also present SIS mixer designs with balanced and sideband separ- ating capability. These mixers employ back-to-back finline tapers, so that the RF and local oscillator (LO) signals can be injected separately without a beam splitter. We have fabricated and tested the performance of the balanced mixers, and analysed their performance thoroughly. We have also investigated a new method of generating LO signals by beating the tones of two infrared lasers. Using the current 16-pixel 350 GHz SIS receiver, HARP-B, we have observed the <sup>12</sup>CO J=3→2 emission lines from two nearby galaxies. An important result we found is that the <sup>12</sup>CO J=3→2 correlates strongly with the 8 μm Polycyclic Aromatic Hydrocarbon emission.
18

A 230 GHz focal plane array using a wide IF bandwidth SIS receiver

Garrett, John January 2018 (has links)
Superconductor-Insulator-Superconductor (SIS) mixers offer the best noise properties of any heterodyne mixing technique at millimetre wavelengths. In astronomy, they are used for sensitive spectroscopy, which is vital for understanding the properties of the cold interstellar medium, including regions of star formation activity. Modern SIS receivers have noise properties that are &Tilde;3 times the quantum limit, and it is now becoming increasingly difficult to lower the noise properties any further. In this thesis, I investigate two techniques that extend the capability of SIS receivers. The first technique is extending the instantaneous bandwidth of the receivers, i.e., the intermediate frequency bandwidth (IFBW). For spectral line sources, wide IFBW expands the survey depth to allow multiple emission lines to be observed simultaneously. Here, I present a new SIS mixer device at 230 GHz. The planar circuit was minimised to reduce any parasitic capacitances that may limit the IFBW. Experimentally, the device provides excellent noise temperatures down to 36 K and an IFBW extending from approximately 0-11 GHz. Simulation software was developed to better understand the performance of this device, and it suggests that the IFBW can be extended to higher frequencies if the IF measurement chain is upgraded. The second technique that I investigate is increasing the number of receivers in the focal plane of the receiver, i.e., adding more pixels. There are many challenges involved in this task including how to fit multiple receivers into a small space, how to properly cool the receiver, and how to deliver the local-oscillator signal. Here, I present a new 1 × 4 focal plane array. This array is acting as a demonstrator for a new array architecture that can be expanded into many more pixels in the future. It uses cascaded waveguide power splitters to divide the local-oscillator signal, and then waveguide directional couplers to combine the LO with the astronomical signals. Finally, I present CO(J=1&rarr;0) measurements from 34 galaxies in the 5MUSES survey. These measurements trace the amount of cold molecular gas present in these galaxies. By comparing these measurements to other metrics that trace star formation activity (e.g., infrared luminosity), I was able to form empirical relationships between the observed quantities. I also combined these results with other star formation studies from nearby and high redshift galaxies to form scaling relationships spanning a large fraction of cosmic time.
19

Design, modelling, and characterisation of millimetre-wave antennas for 5G wireless applications

Jilani, Syeda Fizzah January 2018 (has links)
Future 5G systems and beyond are expected to implement compact and versatile antennas in highly densifi ed millimetre-wave (MMW) wireless networks. This research emphasises on the realisation of 5G antennas provided with wide bandwidth, high gain, adaptable performance, preferably conformal implementation, and feasible bulk fabrication. Ka{band (26.5{40 GHz) is selected based on recent 5G standardisation, and novel antenna geometries are developed in this work on both rigid and flexible substrates by implementing advanced techniques of frequency reconfi guration, multiple-input-multiple- output (MIMO) assembly, as well as wideband and multiband antennas and arrays. Nove lMMW wideband antennas are presented for 5G and spatial diversity at the antenna front-ends is substantially improved by deploying wideband antennas in a MIMO topology for simultaneous multiple-channel communication. However, wideband operation is often associated with efficiency degradation, which demands a more versatile approach that allows the adaptable antenna to select the operating frequency. In this research, high performance recon figurable antennas are designed for frequency selection over Ka- {band. Also, an efficient and conformal antenna front-end solution is developed, which integrates both frequency recon guration and MIMO technology. Gain of the antenna is critically important for 5G systems to mitigate high propagation losses. Antenna design with both high gain and bandwidth is challenging as wideband antennas are traditionally gain-limited, while antenna arrays deliver high gain over a narrow bandwidth. An Enhanced Franklin array model is proposed in this thesis, which aggregates multiband response with high gain performance. Furthermore, novel flexible monopole antenna and array con gurations are realised to attain high gain profi le over the complete Ka{band. These proposed 5G antennas are anticipated as potential contribution in the progress towards the realisation of future wireless networks.
20

A photonic generation and transmission system for millimetre-wave futuristic communications

Al-Dabbagh, Rasha Khalid Mohammed January 2018 (has links)
In this thesis, a fully millimetre-wave (mm-wave) generation and transmission system is proposed for futuristic communications. Significant challenges have been dealt with regarding the proposed system, including designing the mm-wave generation and transmission technique, and its application in cellular networks. These challenges are presented through five main contributions and validated via Optiwave Design Software and MATLAB simulation tools. Firstly, three novel photonic generation methods are proposed and designed based on the characteristics of Brillouin fibre laser and the Stimulated Brillouin Scattering (SBS) effects with phase modulation. The mm-wave carriers are successfully generated with a tuning capability from 5 to 90 GHz. Also, these carriers are with good Signal to Noise Ratio (SNR) up to 51 dB, and low noise signal power of about -40 dBm. The impact of these methods is obtaining stable mm-waves appropriate for Radio over Fibre (RoF) transmission systems in 5G optical networks. Secondly, a full-duplex RoF system with the generation of a 64 GHz mm-wave is proposed. Successful transmission of the mm-wave over a fibre link is achieved for up to 100 km of fibre with a data rate of 5 Gbits/s. The main impact of this system is cost reduction and performance improvement by simplifying mm-wave generation and transmission over fibre. Also, it ensures a useful communication link for small cell networks. Thirdly, a hybrid Fibre/Free-space optical (FSO) system for the generation and transmission of 64 GHz mm-wave is proposed. This optical system provides a low latency communication link and overcomes mm-wave high path losses. A successful mm-wave transmission is achieved over a 10 km fibre length, and 2 km FSO link length with a good Bit Error Rate (BER) of about 1.5×10-13 and a data rate of 10 Gbits/s. This system increases the network coverage area by transmitting the mm-wave over the FSO link to the areas with natural obstacles the laying of fibre cables impossible. Also, it can be used as an effective solution under emergency disaster conditions. Fourthly, a comprehensive study of the wireless propagation performance for different mm-wave bands (28, 60, and 73 GHz) as cellular networks is investigated and compared with the 2.4 GHz Ultra-High Frequency band (UHF). A map-based scenario is proposed for the deployment of Base Stations (BSs) within the Brunel University London Campus map to consider real blockage effects. This investigation involved specifying which mm-wave spectrum can enhance the futuristic cellular networks, by evaluating the coverage and rate trends. Comparative results show that the 73 GHz bands can achieve the higher rate with good coverage and the lowest interference effects than the other mm-wave bands. Finally, a simplified path loss model is proposed to estimate precisely the 28 GHz mm-wave performance, which is considered a key component in 5G networks in outdoor applications. The proposed path loss model captures the diffraction and specular reflection impacts on mm-wave wireless propagation.

Page generated in 0.0504 seconds