• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometric Approach to Support Vector Machines Learning for Large Datasets

Strack, Robert 03 May 2013 (has links)
The dissertation introduces Sphere Support Vector Machines (SphereSVM) and Minimal Norm Support Vector Machines (MNSVM) as the new fast classification algorithms that use geometrical properties of the underlying classification problems to efficiently obtain models describing training data. SphereSVM is based on combining minimal enclosing ball approach, state of the art nearest point problem solvers and probabilistic techniques. The blending of the three speeds up the training phase of SVMs significantly and reaches similar (i.e., practically the same) accuracy as the other classification models over several big and large real data sets within the strict validation frame of a double (nested) cross-validation (CV). MNSVM is further simplification of SphereSVM algorithm. Here, relatively complex classification task was converted into one of the simplest geometrical problems -- minimal norm problem. This resulted in additional speedup compared to SphereSVM. The results shown are promoting both SphereSVM and MNSVM as outstanding alternatives for handling large and ultra-large datasets in a reasonable time without switching to various parallelization schemes for SVMs algorithms proposed recently. The variants of both algorithms, which work without explicit bias term, are also presented. In addition, other techniques aiming to improve the time efficiency are discussed (such as over-relaxation and improved support vector selection scheme). Finally, the accuracy and performance of all these modifications are carefully analyzed and results based on nested cross-validation procedure are shown.

Page generated in 0.0974 seconds