1 |
Estimação de modelos DSGE usando verossimilhança empírica e mínimo contraste generalizados / DSGE Estimation using Generalized Empirical Likelihood and Generalized Minimum ContrastBoaretto, Gilberto Oliveira 05 March 2018 (has links)
O objetivo deste trabalho é investigar o desempenho de estimadores baseados em momentos das famílias verossimilhança empírica generalizada (GEL) e mínimo contraste generalizado (GMC) na estimação de modelos de equilíbrio geral dinâmico e estocástico (DSGE), com enfoque na análise de robustez sob má-especificação, recorrente neste tipo de modelo. Como benchmark utilizamos método do momentos generalizado (GMM), máxima verossimilhança (ML) e inferência bayesiana (BI). Trabalhamos com um modelo de ciclos reais de negócios (RBC) que pode ser considerado o núcleo de modelos DSGE, apresenta dificuldades similares e facilita a análise dos resultados devido ao menor número de parâmetros. Verificamos por meio de experimentos de Monte Carlo se os estimadores estudados entregam resultados satisfatórios em termos de média, mediana, viés, erro quadrático médio, erro absoluto médio e verificamos a distribuição das estimativas geradas por cada estimador. Dentre os principais resultados estão: (i) o estimador verossimilhança empírica (EL) - assim como sua versão com condições de momento suavizadas (SEL) - e a inferência bayesiana (BI) foram, nesta ordem, os que obtiveram os melhores desempenhos, inclusive nos casos de especificação incorreta; (ii) os estimadores continous updating empirical likelihood (CUE), mínima distância de Hellinger (HD), exponential tilting (ET) e suas versões suavizadas apresentaram desempenho comparativo intermediário; (iii) o desempenho dos estimadores exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) e suas versões suavizadas foi bastante comprometido pela ocorrência de estimativas atípicas; (iv) as versões com e sem suavização das condições de momento dos estimadores das famílias GEL/GMC apresentaram desempenhos muito similares; (v) os estimadores GMM, principalmente no caso sobreidentificado, e ML apresentaram desempenhos consideravelmente abaixo de boa parte de seus concorrentes / The objective of this work is to investigate the performance of moment-based estimators of the generalized empirical likelihood (GEL) and generalized minimum contrast (GMC) families in the estimation of dynamic stochastic general equilibrium (DSGE) models, focusing on the robustness analysis under misspecification, recurrent in this model. As benchmark we used generalized method of moments (GMM), maximum likelihood (ML) and Bayesian inference (BI). We work with a real business cycle (RBC) model that can be considered the core of DSGE models, presents similar difficulties and facilitates the analysis of results due to lower number of parameters. We verified, via Monte Carlo experiments, whether the studied estimators presented satisfactory results in terms of mean, median, bias, mean square error, mean absolute error and we verified the distribution of the estimates generated by each estimator. Among the main results are: (i) empirical likelihood (EL) estimator - as well as its version with smoothed moment conditions (SEL) - and Bayesian inference (BI) were, in that order, the ones that obtained the best performances, even in misspecification cases; (ii) continuous updating empirical likelihood (CUE), minimum Hellinger distance (HD), exponential tilting (ET) estimators and their smoothed versions exhibit intermediate comparative performance; (iii) performance of exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) and its smoothed versions was seriously compromised by atypical estimates; (iv) smoothed and non-smoothed GEL/GMC estimators exhibit very similar performances; (v) GMM, especially in the over-identified case, and ML estimators had lower performance than their competitors
|
2 |
Estimação de modelos DSGE usando verossimilhança empírica e mínimo contraste generalizados / DSGE Estimation using Generalized Empirical Likelihood and Generalized Minimum ContrastGilberto Oliveira Boaretto 05 March 2018 (has links)
O objetivo deste trabalho é investigar o desempenho de estimadores baseados em momentos das famílias verossimilhança empírica generalizada (GEL) e mínimo contraste generalizado (GMC) na estimação de modelos de equilíbrio geral dinâmico e estocástico (DSGE), com enfoque na análise de robustez sob má-especificação, recorrente neste tipo de modelo. Como benchmark utilizamos método do momentos generalizado (GMM), máxima verossimilhança (ML) e inferência bayesiana (BI). Trabalhamos com um modelo de ciclos reais de negócios (RBC) que pode ser considerado o núcleo de modelos DSGE, apresenta dificuldades similares e facilita a análise dos resultados devido ao menor número de parâmetros. Verificamos por meio de experimentos de Monte Carlo se os estimadores estudados entregam resultados satisfatórios em termos de média, mediana, viés, erro quadrático médio, erro absoluto médio e verificamos a distribuição das estimativas geradas por cada estimador. Dentre os principais resultados estão: (i) o estimador verossimilhança empírica (EL) - assim como sua versão com condições de momento suavizadas (SEL) - e a inferência bayesiana (BI) foram, nesta ordem, os que obtiveram os melhores desempenhos, inclusive nos casos de especificação incorreta; (ii) os estimadores continous updating empirical likelihood (CUE), mínima distância de Hellinger (HD), exponential tilting (ET) e suas versões suavizadas apresentaram desempenho comparativo intermediário; (iii) o desempenho dos estimadores exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) e suas versões suavizadas foi bastante comprometido pela ocorrência de estimativas atípicas; (iv) as versões com e sem suavização das condições de momento dos estimadores das famílias GEL/GMC apresentaram desempenhos muito similares; (v) os estimadores GMM, principalmente no caso sobreidentificado, e ML apresentaram desempenhos consideravelmente abaixo de boa parte de seus concorrentes / The objective of this work is to investigate the performance of moment-based estimators of the generalized empirical likelihood (GEL) and generalized minimum contrast (GMC) families in the estimation of dynamic stochastic general equilibrium (DSGE) models, focusing on the robustness analysis under misspecification, recurrent in this model. As benchmark we used generalized method of moments (GMM), maximum likelihood (ML) and Bayesian inference (BI). We work with a real business cycle (RBC) model that can be considered the core of DSGE models, presents similar difficulties and facilitates the analysis of results due to lower number of parameters. We verified, via Monte Carlo experiments, whether the studied estimators presented satisfactory results in terms of mean, median, bias, mean square error, mean absolute error and we verified the distribution of the estimates generated by each estimator. Among the main results are: (i) empirical likelihood (EL) estimator - as well as its version with smoothed moment conditions (SEL) - and Bayesian inference (BI) were, in that order, the ones that obtained the best performances, even in misspecification cases; (ii) continuous updating empirical likelihood (CUE), minimum Hellinger distance (HD), exponential tilting (ET) estimators and their smoothed versions exhibit intermediate comparative performance; (iii) performance of exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) and its smoothed versions was seriously compromised by atypical estimates; (iv) smoothed and non-smoothed GEL/GMC estimators exhibit very similar performances; (v) GMM, especially in the over-identified case, and ML estimators had lower performance than their competitors
|
Page generated in 0.054 seconds